مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

400
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Numerical simulation of projectile penetration on fuel filled tank and comparing with experimental method

Pages

  51-61

Abstract

 In this study, the effects of Impact of a projectile on a fuel Tank are studied using the finite element method and compared with experimental method. Due to penetration of the bullet into the Tank, large internal pressures from the fluid are imposed on the Tank's walls which can damage it. The considered fluid structure interaction (FSI) problem is solved in an Eulerian-Lagrangian reference frame by using the LS-Dyna software. By comparing of the results obtained from the simulations and the experimental data, it can be seen that the LS-Dyna software is able to model the different phases of event accurately. In previous researches mostly the penetration and cavitation phases are investigated numerically. In this paper all phases namely penetration, cavitation, stresses applied to Tank’ s walls and bullet exit are investigated. The comparison between the Von Mises stress of walls in the fluid-filled Tank and the empty one signifies 30 percent growth of the maximum Von Mises stress in the wall of the fluid-filled Tank compared to the walls of the empty Tank. Also in addition to what has been done in previous numerical works, the failure mode of fluid-filled Tanks are determined numerically. The numerical results show that because fluid-filled Tank walls are pre-stress due to the fluid shock waves, the failure mode of fluid-filled Tank is quite different with the failure mode of the empty one.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Mansoori, Hassan, & ZAREI, HAMIDREZA. (2018). Numerical simulation of projectile penetration on fuel filled tank and comparing with experimental method. MODARES MECHANICAL ENGINEERING, 18(4 ), 51-61. SID. https://sid.ir/paper/179480/en

    Vancouver: Copy

    Mansoori Hassan, ZAREI HAMIDREZA. Numerical simulation of projectile penetration on fuel filled tank and comparing with experimental method. MODARES MECHANICAL ENGINEERING[Internet]. 2018;18(4 ):51-61. Available from: https://sid.ir/paper/179480/en

    IEEE: Copy

    Hassan Mansoori, and HAMIDREZA ZAREI, “Numerical simulation of projectile penetration on fuel filled tank and comparing with experimental method,” MODARES MECHANICAL ENGINEERING, vol. 18, no. 4 , pp. 51–61, 2018, [Online]. Available: https://sid.ir/paper/179480/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button