Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

304
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

212
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

A CLUSTER-BASED SIMILARITY FUSION APPROACH FOR SCALING-UP COLLABORATIVE FILTERING RECOMMENDER SYSTEM

Pages

  41-52

Abstract

 Collaborative Filtering (CF) recommenders work by collecting user ratings for items in a given domain and computing similarities between users or items to produce recommendations. The user-item rating database is extremely sparse. This means the number of ratings obtained is very small compared with the number of ratings that need to be predicted. CF suffers from the sparsity problem, resulting in poor quality recommendations and reduced coverage. Further, a CF algorithm needs calculations that are very expensive and grow non-linearly with the number of users and items in a database. Incited by these challenges, we present Cluster-Based SIMILARITY FUSION (CBSF), a new hybrid COLLABORATIVE FILTERING algorithm which can deal with the sparsity and scalability issues simultaneously. By the use of carefully selected clusters of users and items, CBSF reduces the computational cost of traditional CF, while retaining high accuracy. Experimental results demonstrate that apart from being scalable, CBSF leads to a better precision and coverage for the recommendation engine.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    GOHARI, FAEZEH SADAT, & TAROKH, MOHAMMAD JAFAR. (2014). A CLUSTER-BASED SIMILARITY FUSION APPROACH FOR SCALING-UP COLLABORATIVE FILTERING RECOMMENDER SYSTEM. INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH, 6(2), 41-52. SID. https://sid.ir/paper/315135/en

    Vancouver: Copy

    GOHARI FAEZEH SADAT, TAROKH MOHAMMAD JAFAR. A CLUSTER-BASED SIMILARITY FUSION APPROACH FOR SCALING-UP COLLABORATIVE FILTERING RECOMMENDER SYSTEM. INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH[Internet]. 2014;6(2):41-52. Available from: https://sid.ir/paper/315135/en

    IEEE: Copy

    FAEZEH SADAT GOHARI, and MOHAMMAD JAFAR TAROKH, “A CLUSTER-BASED SIMILARITY FUSION APPROACH FOR SCALING-UP COLLABORATIVE FILTERING RECOMMENDER SYSTEM,” INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY RESEARCH, vol. 6, no. 2, pp. 41–52, 2014, [Online]. Available: https://sid.ir/paper/315135/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top