مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

354
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

103
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

بررسی رفتار مصالح شن دار در بارگذاری زه کشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی

صفحات

 صفحه شروع 2071 | صفحه پایان 2096

چکیده

 امکان توسعه و بکارگیری شبکه های عصبی مصنوعی در مدل سازی نتایج آزمایش های مونوتونیک سه محوری قطر بزرگ روی انواع مصالح سنگ ریزه ای تیزگوشه, گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه به کار رفته در بدنه سدهای مهم کشور را ارائه می دهد. در ابتدا قابلیت شبکه های عصبی مصنوعی (ANNs) در مدل سازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفره ای- کرنش محوری بررسی شده است که دلالت بر قابلیت نسبتا مناسب مدل در شبیه سازی رفتار مصالح شن دار دارد. بانک اطلاعات بکار رفته در شبکه, شامل 52 گزینه مختلف آزمایش سه محوری کرنش-کنترل تحت شرایط زهکشی نشده است. برای مساله مورد نظر, یک برنامه شبکه های عصبی مصنوعی پیشخوراند سه لایه پرسپترون (MLP) در محیط MATLAB7 نوشته شد و شبکه بهینه (تعداد لایه های مخفی, تابع تبدیل و نوع آموزش شبکه) به طریق سعی و خطا, و با توجه به شاخص های خطا و تطابق با داده های آزمایشگاهی انتخاب شد. پارامترهای ورودی شبکه شامل تنش محدود کننده, دانسیته و درصد رطوبت بهینه, توزیع اندازه دانه ها و نرخ ایجاد کرنش می باشد. نتایج نشان می دهد که ANNs قابلیت بسیار مناسبی در تخمین منحنی های رفتاری یاد شده در کلیه موارد بررسی شده دارد. در ادامه قابلیت شبکه های عصبی مصنوعی (ANNs) در بدست آوردن حداکثر زاویه اصطکاک داخلی و نتاطی از منحنی های رفتاری شامل تنش های تفاضلی حداکثر و پسماند و اضافه فشارهای آب حفره ای در کرنش های نظیر بررسی شد. ضمنا از قابلیت تعمیم شبکه عصبی مصنوعی برای بررسی موارد آزمایش نشده مثل اثر تغییرات دانسیته و درصد کوچک تر از 0.2mm هم بهره گرفته شد.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    آقایی آرایی، عطا. (1393). بررسی رفتار مصالح شن دار در بارگذاری زه کشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی. زمین شناسی مهندسی، 8(2)، 2071-2096. SID. https://sid.ir/paper/495865/fa

    Vancouver: کپی

    آقایی آرایی عطا. بررسی رفتار مصالح شن دار در بارگذاری زه کشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی. زمین شناسی مهندسی[Internet]. 1393؛8(2):2071-2096. Available from: https://sid.ir/paper/495865/fa

    IEEE: کپی

    عطا آقایی آرایی، “بررسی رفتار مصالح شن دار در بارگذاری زه کشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی،” زمین شناسی مهندسی، vol. 8، no. 2، pp. 2071–2096، 1393، [Online]. Available: https://sid.ir/paper/495865/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button