مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

361
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

195
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

SYSTEM DYNAMICS AND ARTIFICIAL NEURAL NETWORK INTEGRATION: A TOOL TO VALUATE THE LEVEL OF JOB SATISFACTION IN SERVICES

Pages

  13-26

Keywords

ARTIFICIAL NEURAL NETWORK (ANN) 

Abstract

 This study presents an integrated intelligent algorithm to valuate the level of JOB SATISFACTION (JS) in services. JOB SATISFACTION plays an important role as a competitive advantage in organizations especially in helth industry. Recruitment and retention of human resources are persistent problems associated with this field. Most of the researchs have focused on JOB SATISFACTION factors and few of researches have noticed about its effects on productivity. However, little researchs have focused on the factors and effects of JOB SATISFACTION simultanosly by SYSTEM DYNAMICS approaches.In this paper, firstly, analyses the literature relating to SYSTEM DYNAMICS and JOB SATISFACTION in services specially at a hospital clinic and reports the related factors of employee JOB SATISFACTION and its effects on productivity. The conflicts and similarities of the researches are discussed and argued. Then a novel procedure for JOB SATISFACTION evaluation using (Artificial Neural Networks) ANNs and SYSTEM DYNAMICS is presented. The proposed procedure is implemented for a large hospital in Iran. The most influencial factors on JOB SATISFACTION are chosen by using ANN and three differents dynamics scenarios are built based on ANN's result. The modelling effort has focused on evaluating the JOB SATISFACTION level in terms of key factors which obtain from ANN result such as Pay, Work and Co-Workers at all three scenarios. The study concludes with the analysis of the obtained results. The results show that this model is significantly usfule for JOB SATISFACTION evaluation and provide policy makers with an appropriate tool to make more accurate decision on kind of reward. This is because the proposed approach is capable of handling non-linearity, complexity as well as uncertainty that may exist in actual data and situation.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    ZARE MEHRJERDI, YAHIA, & ALIHEIDARY, TAHEREH. (2014). SYSTEM DYNAMICS AND ARTIFICIAL NEURAL NETWORK INTEGRATION: A TOOL TO VALUATE THE LEVEL OF JOB SATISFACTION IN SERVICES. INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING AND PRODUCTION RESEARCH (IJIE) (ENGLISH), 25(1), 13-26. SID. https://sid.ir/paper/636704/en

    Vancouver: Copy

    ZARE MEHRJERDI YAHIA, ALIHEIDARY TAHEREH. SYSTEM DYNAMICS AND ARTIFICIAL NEURAL NETWORK INTEGRATION: A TOOL TO VALUATE THE LEVEL OF JOB SATISFACTION IN SERVICES. INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING AND PRODUCTION RESEARCH (IJIE) (ENGLISH)[Internet]. 2014;25(1):13-26. Available from: https://sid.ir/paper/636704/en

    IEEE: Copy

    YAHIA ZARE MEHRJERDI, and TAHEREH ALIHEIDARY, “SYSTEM DYNAMICS AND ARTIFICIAL NEURAL NETWORK INTEGRATION: A TOOL TO VALUATE THE LEVEL OF JOB SATISFACTION IN SERVICES,” INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING AND PRODUCTION RESEARCH (IJIE) (ENGLISH), vol. 25, no. 1, pp. 13–26, 2014, [Online]. Available: https://sid.ir/paper/636704/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button