مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

195
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

98
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering

Pages

  317-326

Abstract

 In this work, a novel Silicon on Insulator (SOI) MOSFET is proposed and investigated. The drain and source electrode structures are optimized to enhance ON-current while global Device temperature and Hot carrier injection are decreased. In addition, to create an effective heat passage from channel to outside of the device, a silicon region has embedded in the buried oxide. In order to reduce the device leakage current and controlling the threshold voltage, a p-type retrograde doping is introduced into channel region. Since the air has the least permittivity among materials, it can be utilized to decrease the device parasitic capacitances. Based on this, an air gap is embedded in the buried oxide near the silicon to improve RF performance of the device. Because the source and drain electrodes are embedded in and over the silicon film in the source and drain regions, we called this structure EEIOS-SOI MOSFET. “ EEIOS” stands for “ Embedded Electrodes In and Over the Silicon film” . During this work, EEIOS-SOI MOSFET is compared with a conventional SOI MOSFET and another SOI MOSFET with just Embedded Electrodes In the Silicon Film (EEISSOI). EEIS-SOI presents better electrical figure of merits including lower subthreshold slope and lower leakage current in simulations. An immense investigation among these devices shows that EEIOS-SOI MOSFET has better transconductance, lower gate injection leakage current and lower temperature related to DC parameters and higher cut off frequency, gain bandwidth product and unilateral power gain related to AC figures of merits compared to its counterparts.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Dideban, D., Karbalaee, Mohamad, Moezi, Negin, & HEIDARI, HADI. (2020). Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering. JOURNAL OF NANOSTRUCTURES, 10(2), 317-326. SID. https://sid.ir/paper/744183/en

    Vancouver: Copy

    Dideban D., Karbalaee Mohamad, Moezi Negin, HEIDARI HADI. Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering. JOURNAL OF NANOSTRUCTURES[Internet]. 2020;10(2):317-326. Available from: https://sid.ir/paper/744183/en

    IEEE: Copy

    D. Dideban, Mohamad Karbalaee, Negin Moezi, and HADI HEIDARI, “Improvement of a Nano-scale Silicon on Insulator Field Effect Transistor Performance using Electrode, Doping and Buried Oxide Engineering,” JOURNAL OF NANOSTRUCTURES, vol. 10, no. 2, pp. 317–326, 2020, [Online]. Available: https://sid.ir/paper/744183/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button