مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

793
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

553
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

پیش یابی جریان ماهانه ورودی به سد طرق واقع دراستان خراسان شمالی با استفاده از ترکیب مدل ذوب برف SWEG و مدل پیش یابی جریان رودخانه SSP

صفحات

 صفحه شروع 13 | صفحه پایان 29

چکیده

 پیش یابی (forecast) میزان حجم آورد ماهانه رودخانه, یکی از متغیرهای موثر در بهره برداری از مخازن سدها و بهینه سازی منحنی فرمان نیروگاه های برق آبی به شمار می رود. از این رو تهیه مدلی با دقت بالا جهت پیش یابی آورد ماهانه رودخانه ضرورت دارد. استفاده از مدل های رگرسیون چند متغیره یکی از روش های معمول در این مورد به حساب می آید. از ضعف های مدل های رگرسیونی چند متغیره خطی, حساس بودن ضرایب متغیرهای مستقل (predictors) و نسبت طول دوره آماری به تعداد متغیرهای مذکور می باشد. بر اساس تحقیقات پیشین نشان داده شده که در صورت وجود همبستگی معنی دار میان متغیر های مستقل, ضرایب آن ها غلط برآورد شده و بعضا علامت ضریب بعضی از این متغیرها مخالف علامت ضریب همبستگی بین همان متغیر و متغیر وابسته می گردد. بدین ترتیب, جهت کاهش متغیرهای مستقل اولیه به منظور افزایش نسبت طول دوره آماری به تعداد این متغیرهای مستقل و حذف همبستگی درونی میان آنان اقدام به تهیه مدل SSP گردید. از دیگر برتری های مدل SSP, استفاده از یک جستجوگر قوی جهت انتخاب متغیرهای مستقل اولیه و انتخاب مولفه های موثر در پیش یابی آورد ماهانه رودخانه می باشد. یکی از مشکلات موجود در بهره گیری از مدل های پیش یابی در حوضه های برف خیز, کمبود و یا نبود داده های آب معادل برف است. آب معادل برف یکی از ورودی های اساسی در پیش یابی آورد آب بهاره و تابستانه در مدل های پیش یابی حوضه های برف خیز بشمار می رود. به دلیل محدود بودن تعداد اندازه گیری ها به یک یا دو بار در سال, ضرورت تهیه مدلی که آب معادل برف را بر اساس سایر اطلاعات جوی و زمینی شبیه سازی نماید, محسوس می باشد. در این مقاله مدل SWEG که جهت برآورد آب معادل برف به طور روزانه تهیه شده معرفی می گردد. با استفاده از الگوریتم ژنتیک جهت واسنجی پارامترهای این مدل سعی شده است کاربرد ترکیب آن با مدل SSP بر روی حوضه آبریز بالا دست سد طرق به منظور پیش یابی آورد ورودی به سد مورد آزمایش قرار گیرد. نتایج حاصل از جذر مربع میانگین خطا(RMSE) و ضریب همبستگی میان مقادیر مشاهداتی و پیش یابی شده نشان دهنده دقت قابل قبول ترکیب این دو مدل در پیش یابی آورد رودخانه می باشد.

استنادها

  • ثبت نشده است.
  • ارجاعات

    استناددهی

    APA: کپی

    شرافتی، احمد، ذهبیون، باقر، و ابریشم چی، احمد. (1393). پیش یابی جریان ماهانه ورودی به سد طرق واقع دراستان خراسان شمالی با استفاده از ترکیب مدل ذوب برف SWEG و مدل پیش یابی جریان رودخانه SSP. علوم و تکنولوژی محیط زیست، 16(1 (مسلسل 60))، 13-29. SID. https://sid.ir/paper/87620/fa

    Vancouver: کپی

    شرافتی احمد، ذهبیون باقر، ابریشم چی احمد. پیش یابی جریان ماهانه ورودی به سد طرق واقع دراستان خراسان شمالی با استفاده از ترکیب مدل ذوب برف SWEG و مدل پیش یابی جریان رودخانه SSP. علوم و تکنولوژی محیط زیست[Internet]. 1393؛16(1 (مسلسل 60)):13-29. Available from: https://sid.ir/paper/87620/fa

    IEEE: کپی

    احمد شرافتی، باقر ذهبیون، و احمد ابریشم چی، “پیش یابی جریان ماهانه ورودی به سد طرق واقع دراستان خراسان شمالی با استفاده از ترکیب مدل ذوب برف SWEG و مدل پیش یابی جریان رودخانه SSP،” علوم و تکنولوژی محیط زیست، vol. 16، no. 1 (مسلسل 60)، pp. 13–29، 1393، [Online]. Available: https://sid.ir/paper/87620/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button