The rotary motion engines have still potentially many advantages over the conventional reciprocating engines. But only the reciprocating engine became the dominant mechanism for engines because of the simplicity of the combustion chamber sealing mechanism. This paper describes the basic concept, design, modeling and analysis of a new rotary engine type, axial vane rotary engine. One of important component in the axial vane rotary engine is cam profile which can affect the dynamic behaviors of engine. Seven cam profiles are simulated and compared kinematically to find an optimum cam profile with minimum velocity, acceleration, jerk and pressure angle to have an axial vane rotary engine with high TBO (Time between Overhaul) with respect to conventional type. In addition, a two-zone, quasi-dimensional model as a simple, fast and accurate model, is developed to simulate engine operating cycle and find the chambers pressure. The parametric modeling of an axial vane rotary engine as a prototype, including main parameters (geometrical and operating) is studied and some design considerations are investigated.