By a brief review on the applications of wavelets in solving optimal control problems, a multi resolution analysis for two dimensional Sobolev spaces and the square spline wavelets are considered. Regarding the density and approximation properties of these wavelets, for the first time, they are employed for solving optimal control problems by embedding method. Existence and the determination way for the solution are also discussed. Finally, the abilities of the new approach are explained by a numerical example and some comparisons.