Shortest path problem is one of the practical issues in optimization, and there are many efficient algorithms in this area. In this issue, a network of some nodes and arcs is considered in which, each arc has a specific parameter such as distance or cost. The main objective is to find the shortest or least costly route between two distinct points. By considering an additional parameter and adding a new limitation, as a capacity constraint, the problem will be closer to the real world condition. This extended issue is known as the constrained shortest path problem and has a higher complexity order and practical algorithms are needed to solve it. In this study, an effective algorithm is presented that obtains the optimal solution within a short time. In this method, a repetitive pattern is used so that, in each iteration, the relaxed model, after adding a logical cut, is solved. The results of the implementation of the proposed algorithm on different networks show its efficiency.