In this paper, we have designed an all-optical controllable gas detector by doping 3-level Λ type nanocrystals in the moving arms' mirror of Michelson interferometer and used electromagnetically induced transparency (EIT) phenomenon to change its refractive index. By this means, we have created a controllable phase difference between light beams in two arms of the Michelson interferometer, where reflection phase of the EIT-based mirror changes about p radiant. Also, the signal reflection from EIT-based mirror changes between 0% and 100% approximately, while the second arm's signal is reflected completely. This EIT-based mirror's refractive index change can be a good alternative for conventional Michelson interferometer-based gas detector with one mechanical moving arm mirror (Undergraduate Instrumental Analysis, 6th edn. Marcel Dekker, New York, 2005), where long response time and unfix moving speed were its main drawbacks. While, in this scheme, not only these disadvantages are removed but also the response time can reach the electron transient time between the atomic energy levels. Then, by this all-optical tunable gas detector, we have achieved many modifications such as response time in sub-nanoseconds, high resolution, and high accuracy, or less cross sensitivity to other gas species.