Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Journal Issue Information

Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Author(s): 

KAMBOJ S.K. | KARIMI M.N.

Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    368-378
Measures: 
  • Citations: 

    0
  • Views: 

    235
  • Downloads: 

    73
Abstract: 

Alcohols have been used as a fuel for engines since 19th century. Among the various alcohols, ethanol and methanol are known as the most suited renewable, bio-based and ecofriendly fuel for spark-ignition (SI) engines. The most attractive properties of ethanol and methanol as an SI engine fuel are that it can be produced from renewable energy sources such as sugar, cane, cassava, many types of waste biomass materials, corn and barley. In addition, ethanol has higher evaporation heat, octane number and flammability temperature therefore it has positive influence on engine performance and reduces exhaust emissions. In this study, the effects of unleaded iso-octane, unleaded iso-octane-ethanol blend (E10) and isooctane-methanol blend (M10) on engine performance were investigated experimentally in a single cylinder four-stroke spark-ignition engine. The tests were performed by varying the throttle position, engine speed and loads. Three sets of observations were recorded at (1301 rpm, 16.8 Kg load), (1468 rpm, 15.8 Kg load) and (1544 rpm, 10 Kg load) for all tested fuels. The results of the engine test showed that IP, IMEP, Volumetric efficiency and thermal efficiency was higher for the E10 fuel and BSFC was lower. In general, most suited blend for SI engines has been specified as a blend of 10% ethanol. It was also observed that better performance was recorded during second set of observation for all the tested fuels. It was also found that ethanol–gasoline blends allow increasing compression ratio (CR) without knock occurrence.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 235

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 73 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

IRANMANESH MASOUD

Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    379-392
Measures: 
  • Citations: 

    0
  • Views: 

    472
  • Downloads: 

    175
Abstract: 

In this study, various percentage of DEE was added to the optimum selected ethanol-diesel blend (D-E10) and optimized its blending ratio to overcome the poor ignition quality of ethanol when utilized in a single cylinder DI diesel engine. Some physicochemical properties of test fuels such as heating value, viscosity, and density and distillation profile were determined in accordance to the ASTM standards. The heating value of the blends was reduced with addition of DEE. Front-end volatility of the blends was improved by addition of DEE, which in turn improves the cold starting property. The uncertainty associated with measurements was also measured. The data were analyzed statistically for 95% confidence level. The results have shown that addition of biofuels, ethanol and diethyl ether, have improved the combustion and emissions characteristics of the engine. Addition of ethanol and DEE improved smoke and NOx emissions simultaneously. It was found the 8% DEE add to the D-E10 blend is the optimum combination based on the performance and emission analysis with the exception of smoke opacity in which 15% DEE addition made the lowest smoke opacity. At this optimum ratio the minimum peak heat release rate, the lowest NOx emissions and the maximum BTE were occurred at full load condition. Meanwhile the lowest level of CO and HC emissions were obtained at all the load conditions with the same blending ratio.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 472

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 175 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    393-411
Measures: 
  • Citations: 

    0
  • Views: 

    281
  • Downloads: 

    166
Abstract: 

Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the future behavior of the overtaking vehicle in real traffic flow. In these models, the kinematic features of Driver-Vehicle-Units (DVUs) such as distance, velocity, and acceleration are used. Unlike the previous models, where some variables of the two involved vehicles are considered to be constant, in this paper, instantaneous values of the variables are considered. The first model predicts the future value of the longitudinal acceleration and the movement angle of the overtaking vehicle. The other model predicts the overtaking trajectory for the overtaking vehicle. The second model is designed for two different vehicle classes: motorcycles and autos. Also, the result of the trajectory prediction model is compared with the result of other models. This comparison provides a better chance to analyze the performance of this model. Using the field data, the outputs of the MANFIS models are validated and compared with the real traffic dataset. The simulation results show that these two MANFIS models have a very close compatibility with the field data and reflect the situation of the traffic flow in a more realistic way. These models can be used for all types of drivers and vehicles and also in other roads and are not limited to certain types of situations. The proposed models can be employed in ITS applications and the like.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 281

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 166 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

JAFARI B. | DOMIRI GANJI D.

Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    412-423
Measures: 
  • Citations: 

    0
  • Views: 

    286
  • Downloads: 

    178
Abstract: 

Air pollution is one of the major issues about the diesel engines in todays' world. It is a special concern in those areas that have difficulty meeting health-based outdoor air quality standards. Natural gas has low emission and resource abundance and also conventional compression ignition engine can be easily converted to a dual fuel mode to use natural gas as main fuel and diesel as pilot injection. The main object of this work is to investigate the effect of number of injector nozzle hole on the combustion and exhaust emission in a gas engine ignited with diesel fuel. We use one and three-dimensional simulation in parallel way in order to analyze the performance and combustion process of a dual fuel engine. The experimental results have also reported and compared with the simulated data.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 286

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 178 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    424-434
Measures: 
  • Citations: 

    0
  • Views: 

    286
  • Downloads: 

    139
Abstract: 

In the present work, multidimensional modeling of open-cycle process of OM355 engine was developed. Calculations for computational mesh were carried out. The results of the model were validated by experimentally measured in-cylinder pressure and the good agreement between calculations and measurements approved the trustworthy of numerical code. Results included pressure, temperature, emission and rate of heat release diagrams were represented for the full cycle. Furthermore local flow field velocity vectors were indicated. The results show the importance of open-cycle simulations in automotive engine researches.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 286

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 139 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

FAZLI ALI

Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    435-445
Measures: 
  • Citations: 

    0
  • Views: 

    290
  • Downloads: 

    80
Abstract: 

In this paper, the optimum shape of Tailor-Welded Blanks (TWB) is investigated. The optimization is performed for two different case studies. The first example is deep drawing of a TWB with dissimilar materials and uniform thicknesses and the next example is deep drawing of a TWB with similar materials and non-uniform thicknesses. The effect of blank optimization on the weld line movement is investigated. Also the effect of weld line location on the blank optimization and weld line movement is examined.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 290

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 80 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2013
  • Volume: 

    3
  • Issue: 

    2
  • Pages: 

    446-456
Measures: 
  • Citations: 

    0
  • Views: 

    353
  • Downloads: 

    110
Abstract: 

One of the most important structural components of engine compartment assembly in a car body is the S-rail. S-rails has significant role in absorbing energy during crash events and therefore it is designed for efficient behavior in such conditions. Driving the peak crushing force of the S-rails is one of the important objectives in the design process of such structures. Peak crushing force is exactly the force applied to the downstream components and then will be transferred to the cabin of vehicle. In this paper, closed form solution is performed to drive the peak crushing force of the S-rails. Results of such analytical model finally are compared with the results of finite element simulation. Good agreement between such results shows the accuracy of the proposed analytical model.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 353

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 110 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button