مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

64
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

10
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

MAXIMAL ABELIAN SUBGROUPS OF THE FINITE SYMMETRIC GROUP

Pages

  103-124

Abstract

 Let G be a group. For an element a 2 G, denote by C (a) the second centralizer of a in G, which is the set of all elements b 2 G such that bx = xb for every x 2 G that commutes with a. Let M be any maximal abelian subgroup of G. Then C 2 2 (a) ,M for every a 2 M. The abelian rank (a-rank) of M is the minimum cardinality of a set A ,M such that ∪,2 C a 2 A (a) generates M. Denote by Sn the symmetric group of permutations on the set X = f 1, : : :, n g. The aim of this paper is to determine the maximal abelian subgroups of Sn of a-rank 1 and describe a class of maximal abelian subgroups of Sn of a-rank at most 2.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Konieczny, Janusz. (2021). MAXIMAL ABELIAN SUBGROUPS OF THE FINITE SYMMETRIC GROUP. INTERNATIONAL JOURNAL OF GROUP THEORY, 10(3), 103-124. SID. https://sid.ir/paper/1004165/en

    Vancouver: Copy

    Konieczny Janusz. MAXIMAL ABELIAN SUBGROUPS OF THE FINITE SYMMETRIC GROUP. INTERNATIONAL JOURNAL OF GROUP THEORY[Internet]. 2021;10(3):103-124. Available from: https://sid.ir/paper/1004165/en

    IEEE: Copy

    Janusz Konieczny, “MAXIMAL ABELIAN SUBGROUPS OF THE FINITE SYMMETRIC GROUP,” INTERNATIONAL JOURNAL OF GROUP THEORY, vol. 10, no. 3, pp. 103–124, 2021, [Online]. Available: https://sid.ir/paper/1004165/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button