مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

45
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

22
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Weighted Ricci curvature in Riemann-Finsler geometry

Pages

  117-136

Abstract

Ricci curvature is one of the important geometric quantities in Riemann-Finsler geometry. Together with the S-curvature, one can de , ne a weighted Ricci curvature for a pair of Finsler metric and a volume form on a manifold. One can build up a bridge from Riemannian geometry to Finsler geometry via geodesic , elds. Then one can estimate the Laplacian of a distance function and the Mean curvature of a metric sphere under a lower weighted Ricci curvature by applying the results in the Riemannian setting. These estimates also give rise to a volume comparison of Bishop-Gromov type for Finsler metric measure manifolds.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Shen, Zhongmin. (2021). Weighted Ricci curvature in Riemann-Finsler geometry. AUT JOURNAL OF MATHEMATICS AND COMPUTING, 2(2), 117-136. SID. https://sid.ir/paper/1043867/en

    Vancouver: Copy

    Shen Zhongmin. Weighted Ricci curvature in Riemann-Finsler geometry. AUT JOURNAL OF MATHEMATICS AND COMPUTING[Internet]. 2021;2(2):117-136. Available from: https://sid.ir/paper/1043867/en

    IEEE: Copy

    Zhongmin Shen, “Weighted Ricci curvature in Riemann-Finsler geometry,” AUT JOURNAL OF MATHEMATICS AND COMPUTING, vol. 2, no. 2, pp. 117–136, 2021, [Online]. Available: https://sid.ir/paper/1043867/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button