مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

31
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

12
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Quantum Calculus Approach to the Dual Bicomplex Fibonacci and Lucas Numbers

Pages

  00-00

Abstract

 Quantum Calculus, which arises in the mathematical fields of combinatorics and special functions as well as in a number of areas, involving the study of fractals and multi−, fractal measures, and expressions for the entropy of chaotic dynamical systems, has attracted the attention of many researchers in recent years. In this paper, by virtue of some useful notations from q−, Calculus, we define the q−, Fibonacci Dual bicomplex numbers and q−, Lucas Dual bicomplex numbers with a different perspective. Afterwards, we give the Binet formulas, binomial sums, exponential generating functions, Catalan identities, Cassini identities, d’, Ocagne identities and some algebraic properties for the q−, Fibonacci Dual bicomplex numbers and q−, Lucas Dual bicomplex numbers.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Kome, S., Kome, C., & Catarino, P.. (2022). Quantum Calculus Approach to the Dual Bicomplex Fibonacci and Lucas Numbers. JOURNAL OF MATHEMATICAL EXTENSION, 16(2), 00-00. SID. https://sid.ir/paper/1065461/en

    Vancouver: Copy

    Kome S., Kome C., Catarino P.. Quantum Calculus Approach to the Dual Bicomplex Fibonacci and Lucas Numbers. JOURNAL OF MATHEMATICAL EXTENSION[Internet]. 2022;16(2):00-00. Available from: https://sid.ir/paper/1065461/en

    IEEE: Copy

    S. Kome, C. Kome, and P. Catarino, “Quantum Calculus Approach to the Dual Bicomplex Fibonacci and Lucas Numbers,” JOURNAL OF MATHEMATICAL EXTENSION, vol. 16, no. 2, pp. 00–00, 2022, [Online]. Available: https://sid.ir/paper/1065461/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button