مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

60
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

22
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

A Note On LS-Category And Topological Complexity Of Real Grassmannian Manifolds

Pages

  00-00

Abstract

 Let Gk, n be the Grassmann manifold of k-planes in Rn+k. The Lusternik-Schnirelmann category and Topological complexity are important invariants of Topological spaces. In this note we calculate the Lusternik-Schnirelmann category and Topological complexity of cer-tain products of Grassmannian manifolds by using cup and zero-cup length. Also we will , nd the lower and upper bounds of the Topological complexity of some Grassmannian manifolds by the same method.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Akhtarifar, F., & Asadi Golmankhaneh, M. A.. (2022). A Note On LS-Category And Topological Complexity Of Real Grassmannian Manifolds. JOURNAL OF MATHEMATICAL EXTENSION, 16(4), 00-00. SID. https://sid.ir/paper/1066153/en

    Vancouver: Copy

    Akhtarifar F., Asadi Golmankhaneh M. A.. A Note On LS-Category And Topological Complexity Of Real Grassmannian Manifolds. JOURNAL OF MATHEMATICAL EXTENSION[Internet]. 2022;16(4):00-00. Available from: https://sid.ir/paper/1066153/en

    IEEE: Copy

    F. Akhtarifar, and M. A. Asadi Golmankhaneh, “A Note On LS-Category And Topological Complexity Of Real Grassmannian Manifolds,” JOURNAL OF MATHEMATICAL EXTENSION, vol. 16, no. 4, pp. 00–00, 2022, [Online]. Available: https://sid.ir/paper/1066153/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button