مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

30
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

14
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

On Relative De , ciencies of Di , erence Polynomials from the View Point of Integrated Moduli of Logarithmic Derivative

Pages

  00-00

Abstract

 Let f be a transcendental Entire function de , ned in the open complex plane C. A di , erence-monomial generated by f is an expression of the form F = fn(fm 􀀀,1) Yd j=1 (f(z + cj)), j, where n, m and , j are all non-negative integers. Now for the sake of de , niteness let us take, Mi[f] = fn(fm 􀀀,1) Yi j=1 (f(z + cj)), j, where 1 ,i ,d: If M1[f], M2[f], : : :,Mn[f] are such monomials in f as de , ned above, then [f] = a1M1[f] + a2M2[f] +: : : + anMn[f] where ai 6= 0 (i = 1,2, : : :, n) is called a di , erence-polynomial generated by f. In this paper, we compare the Valiron defect with the relative Nevan-linna defect of a particular type of di , erential-di , erence polynomial generated by a transcendental Entire function with respect to integrated moduli of logarithmic derivative. Some examples are provided in order to justify the results obtained.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Kumar Datta, S., SARKAR, S., Chakraborty, G., & Manna, A.. (2022). On Relative De , ciencies of Di , erence Polynomials from the View Point of Integrated Moduli of Logarithmic Derivative. JOURNAL OF MATHEMATICAL EXTENSION, 16(5), 00-00. SID. https://sid.ir/paper/1066229/en

    Vancouver: Copy

    Kumar Datta S., SARKAR S., Chakraborty G., Manna A.. On Relative De , ciencies of Di , erence Polynomials from the View Point of Integrated Moduli of Logarithmic Derivative. JOURNAL OF MATHEMATICAL EXTENSION[Internet]. 2022;16(5):00-00. Available from: https://sid.ir/paper/1066229/en

    IEEE: Copy

    S. Kumar Datta, S. SARKAR, G. Chakraborty, and A. Manna, “On Relative De , ciencies of Di , erence Polynomials from the View Point of Integrated Moduli of Logarithmic Derivative,” JOURNAL OF MATHEMATICAL EXTENSION, vol. 16, no. 5, pp. 00–00, 2022, [Online]. Available: https://sid.ir/paper/1066229/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button