مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

24
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

3
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Thermo-economic analysis and optimization of a novel combination of the solar tower power plant, Stirling engine, Reverse osmosis desalination, and proton exchange membrane electrolyzer

Pages

  331-349

Abstract

 This simulation study is aimed to investigate a multi-generation system including cycles of reverse osmosis (RO) desalination, Stirling engine, liquefied natural gas (LNG), a solar tower plant, and proton exchange membrane (PEM) electrolyzer to produce power, pure water, and hydrogen gas. All analyses were conducted to calculate the efficiency, exergy, energy, thermo-economic analysis, and total costs of this system. The sun radiation, liquefied gas flow rate, the temperature difference in the heat exchanger on the cold part of the Stirling engine are assumed as design parameters. Also, the effects of these parameters variation on hydrogen and pure water production were investigated. The power produced by the Stirling engine and LNG cycle of the proposed system is 8.18 MW (with the second law efficiency of 39.2%), which is used to produce 720 m3/h freshwater and 130.5 kg/h hydrogen gas. Sensitivity analysis was performed to determine the most effective variable on the operating conditions which indicated that solar radiation is the most effective design parameter. Finally, the total exergy efficiency and total cost rate were considered as two objective functions and the system was optimized by the Genetic algorithm. In optimized conditions, by the linear programming technique for multidimensional analysis of preference (LINMAP method), exergy efficiency becomes 43.29% and hydrogen production gets 7.6% increased.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button