مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

30
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

2
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

On multiplication $fs$-modules and dimension symmetry

Pages

  363-374

Abstract

 In this paper, we first study $fs$-modules, i.e., modules with finitely many Small submodules. We show that every $fs$-module with finite hollow dimension is Noetherian. Also, we prove that an $R$-module $M$ with finite Goldie dimension, is an $fs$-module if, and only if, $M = M_1 \oplus M_2$, where $M_1$ is semisimple and $M_2$ is an $fs$-module with $Soc(M_2) \ll M$. Then, we investigate multiplication $fs$-modules over commutative rings and we prove that the lattices of $R$-submodules of $M$ and $S$-submodules of $M$ are coincide, where $S=End_R(M)$. Consequently, $M_R$ and $_SM$ have the same Krull (Noetherian, Goldie and hollow) dimension. Further, we prove that for any self-generator multiplication module $M$, to be an $fs$-module as a right $R$-module and as a left $S$-module are equivalent.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button