مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

45
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

3
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Improvement of Neurite Outgrowth in PC12 Cells by TiO2, Au/TiO2 and Ag/TiO2 Nanoparticles

Pages

  325-340

Abstract

 There are numerous applications of nanomaterials in catalysis, biosensing, biotechnology, electronics, magnetic fluids, energy storage and also in the biomedical field, especially in gene or drug delivery and diagnostics. Nanomaterials have amazing capabilities to stimulate neu ronal cells toward neuronal cell proliferation, neuronal cell adhesion, axonal growth, and neuroprotection. Researchers have demonstrated that nanomaterials can also differentiate stem cells into neuronal cells. Recently, the impact of nanomaterials on the proliferation and Differentiation of normal, cancer, and stem cells have been investigated greatly. In this study, the effects of titanium dioxide nanoparticles (TiO2NPs) on the Differentiation of neural stem cells are examined. Our findings indicate that TiO2 nanoparticles lead to Differentiation tendencies biased towards neurons from neural stem cells, suggesting TiO2 nanoparticles might be a beneficial inducer for neuronal Differentiation. We found that pheochromocytoma cell line (PC12 cells) exposed to TiO2, Au/TiO2, Ag/TiO2 nanoparticles significantly increased the Differentiation of neural stem cells and promoted neurite outgrowth. Our data may have resulted from the stimulation of cell adhesion molecules that are associated with cell-matrix interactions through nanoparticle. The findings of this work proposes the use of the Ag/TiO2 nanoparticles which also have antibacterial and antioxidant characteristics, as a suitable method to improve Nerve growth factor (NGF) activity and efficacy, thus, opening the novel window for substantial neuronal repair therapeutics.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button