مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

30
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

3
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Lee Weight and Generalized Lee Weight for Codes Over ‎$‎‎Z_{2^n}$

Pages

  27-33

Keywords

‎$‎(u 
u+v)‎$‎- construction of Codes‎ 

Abstract

 ‎‎‎‎‎‎Let $‎\mathbb{Z}_m$ be the ring of integers modulo $m$ in which $m=2^n$ for arbitrary $n$‎. ‎In this paper‎, ‎we will obtain a relationship between $wt_L(x)‎, ‎wt_L(y)$ and $wt_L(x+y)$ for any $x‎, ‎y \in ‎\mathbb{Z}_m$‎. ‎‎Let ‎$‎‎d_r^L(C)$‎‎ ‎denote ‎the ‎‎$r‎‎$‎-th Generalized Lee Weight for code $C$ in which ‎$‎‎C$ ‎is ‎a Linear code of length $n$ over $‎\mathbb{Z}_4$‎. Also, ‎suppose that $C_1$ and $ C_2$ are two codes over $‎\mathbb{Z}_4$ and $C$ denotes the $(u‎, ‎u+v)$-construction of them‎. ‎In this paper‎, we will obtain an upper bound for $d_r^L(C)$ for all $r$‎, ‎$1 \leq r \leq rank(C)$‎. In addition, ‎we will obtain $d_1^L(C)$ in terms of $d_1^L(C_1)$ and $d_1^L(C_2)$.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button