مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

26
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Analytical solution of the evolution equations of the parton distribution functions in the small-x region through the Kramers-Moyal expansion of the master equation of Markov processes

Pages

  327-338

Keywords

parton distribution function (PDF)Q4

Abstract

 Recently, we generated the evolution equations of the parton distribution functions (PDF) usually used in the hadrons phenomenology using the stochastic modeling of the non-equilibrium statistical mechanics in the momentum space. The evolution equations obtained from stochastic modeling are the same as the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations, but are obtained by a more simplistic mathematical procedure based on the non-equilibrium statistical mechanics and the theory of Markov processes. In this paper, we analytically solve the parton evolution equation for the non-singlet quark distribution function in the small-x (the longitudinal momentum fraction) region through the Kramers-Moyal expansion of the master equation. Finally, we compare the cutoff dependent non-singlet quark distribution function obtained from the analytical solution by considering the strong ordering and the angular ordering constraints with the ordinary non-singlet quark distribution function produced by the MMHT2014 group. In general, we show that our results at the small x and moderate Q2 (the energy scale) are in good agreement with the results of the MMHT2014 group.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button