مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

37
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

2
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Second Module Cohomology Group of Induced Semigroup Algebras

Pages

  73-84

Abstract

 For a discrete semigroup $ S $ and a left multiplier operator  $T$ on  $S$, there is a new induced semigroup $S_{T}$, related to $S$ and $T$. In this paper, we show that if $T$ is multiplier and bijective,  then the second module cohomology groups $\mathcal{H}_{\ell^1(E)}^{2}(\ell^1(S), \ell^{\infty}(S))$ and $\mathcal{H}_{\ell^1(E_{T})}^{2}(\ell^1({S_{T}}), \ell^{\infty}(S_{T}))$ are equal, where $E$ and  $E_{T}$ are subsemigroups of idempotent elements in $S$ and $S_{T}$,   respectively.  Finally, we show thet, for every odd $n\in\mathbb{N}$,  $\mathcal{H}_{\ell^1(E_{T})}^{2}(\ell^1(S_{T}),\ell^1(S_{T})^{(n)})$ is a Banach space, when $S$ is a commutative inverse semigroup.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button