مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

42
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

15
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Integration of high spatial resolution SAR and multispectral images for building detection in urban areas

Pages

  1-16

Abstract

 In this study, the SAR data is used as a supplementary data to overcome the limitations of the multispectral (MS) image in building detection. Therefore, the proposed method utilizes a multisensor data fusion to take the advantages of both MS and SAR data together. In addition, two different filter-based Feature selection methods, MNF and PCA, are investigated as an alternative scenario when the training data is not accessible. In this respect, the optimum feature vector is selected using MNF, PCA and Genetic methods from MS and SAR data, separately. Thereafter, each selected feature vector is used to classify the images by implementing the support vector machine (SVM) and the artificial Neural Network classification methods. The experimental result shows that the PCA is able to select the feature vector without the need of training data as well as genetic algorithm. However, the MS classification result is poor where both roofs and streets are covered with asphalt. In this framework, the fusion of SAR and MS images in feature level was utilized to improve the classification results. Finally, to assign a label at the sample, a majority voting is calculated between the used classification methods results. However, according to the noisy result, using the neighborhood information in the form of a moving spatial window in different sizes is examined to determine the label of the central pixel more accurately. According to the experimental results, the overall accuracy and building detection accuracy are obtained 92.82% and 80.14%, respectively, which represent the satisfying performance of the proposed method.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button