مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

1,386
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

727
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

1

اطلاعات مقاله نشریه

عنوان

ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی

صفحات

 صفحه شروع 24 | صفحه پایان 35

چکیده

 مقدمه: الگوریتم های فرا ابتکاری و ترکیبی از توانمندی بالایی در مدل سازی مسائل پزشکی برخوردارند. در این مطالعه از شبکه عصبی به منظور پیش بینی ابتلا به دیابت در میان افراد مستعد دیابت استفاده گردید. روش کار: پژوهش حاضر از نوع کاربردی و جامعه ی هدف آن متشکل از 545 فرد بیمار و سالم از مرکز دیابت دانشگاه علوم پزشکی همدان جمع آوری گردید جهت پیش بینی بیماری دیابت استفاده شده است. در این مطالعه از الگوریتم ممتیک که تلفیقی است از الگوریتم ژنتیک و الگوریتم جستجوی محلی است, به منظور به روز رسانی وزن های شبکه عصبی و توسعه دقت شبکه عصبی استفاده شده است. یافته ها: بررسی اولیه نشان داد که دقت شبکه عصبی, 88درصد, می باشد. بعد از بروز رسانی وزن ها با الگوریتم ممتیک دقت آن به 2/93درصد افزایش یافت. برای مدل پیشنهادی به ترتیب حساسیت, ویژگی, ارزش اخباری مثبت, ارزش اخباری منفی, مساحت زیر منحنی 2/96, 4/92, 8/93, 3/95, 958/0 برای مدل الگوریتم ژنتیک, 98, 8/84, 6/88, 2/98, 952/0 و برای مدل رگرسیون لجستیک, 6/95, 5/84, 7/94, 0/87, 916/0 به دست آمد. نتیجه گیری: بر اساس یافته های این پژوهش, مدل های شبکه های عصبی در مقایسه با مدل رگرسیون از میزان خطای کمتری در تشخیص بیماری بر اساس متغیرهای فردی و سبک زندگی برخوردارند. یافته های این مطالعه می تواند به برنامه ریزان و ارائه کنندگان خدمات سلامت در برنامه های غربالگری و تشخیص به موقع بیماری دیابت کمک می نماید.

استنادها

ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    جهانی، میثم، رضایی نور، جلال، مهدوی، مهدی، و هداوندی، اسماعیل. (1396). ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی. مدیریت سلامت، 20(67 )، 24-35. SID. https://sid.ir/paper/130051/fa

    Vancouver: کپی

    جهانی میثم، رضایی نور جلال، مهدوی مهدی، هداوندی اسماعیل. ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی. مدیریت سلامت[Internet]. 1396؛20(67 ):24-35. Available from: https://sid.ir/paper/130051/fa

    IEEE: کپی

    میثم جهانی، جلال رضایی نور، مهدی مهدوی، و اسماعیل هداوندی، “ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی،” مدیریت سلامت، vol. 20، no. 67 ، pp. 24–35، 1396، [Online]. Available: https://sid.ir/paper/130051/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button