مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

9
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Generalized weighted composition operators acting between Dirichlet-type spaces and Bloch-type spaces

Pages

  1-10

Abstract

 Let $\mathbb{D}= \{\upsilon\in\mathbb{C}:|\upsilon|<1\}$ be the open unit disk in the complex plane $\mathbb{C}$ and let $H(\mathbb{D})$ be the space of all holomorphic functions on  $\mathbb{D}$. For a non-negative integer $n$ and a function $f \in H(\mathbb{D})$, the $n^{th}-$ order differentiation operator is defined as $D^n f = f^{(n)}$. The weighted composition operator together with $n^{th}-$ order differentiation operator give rise to a new operator generally termed as generalized weighted composition operator denoted by $\mathcal{W}^{n}_{\phi,\xi}$ and is  defined by\begin{equation*}\mathcal{W}^{n}_{\phi,\xi}f(\upsilon)  =\phi(\upsilon)f^{(n)}(\xi(\upsilon)),\quad f\in H(\mathbb{D}); \upsilon\in%\mathbb{D},\end{equation*}where $\phi\in H(\mathbb{D})$ and $\xi$ is a holomorphic self-map of $\mathbb{D}$. This operator is basically the combination of multiplication operator $M_{\phi}$, composition operator  $C_{\xi}$ and $n^{th}-$ order differentiation operator $D^{n}$. We study the boundedness and Compactness of this operator between Dirichlet-type spaces and Bloch-type spaces.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button