مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

8
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Commutators and hyponormal operators on a Hilbert space

Pages

  67-78

Abstract

 Let $\mathcal{H}$ be an infinite-dimensional Hilbert space over the field $\mathbb{C}$, $\mathcal{B}(\mathcal{H})$ be the $\ast$-algebra of all linear bounded operators on $\mathcal{H}$, let $|X|=\sqrt{X^*X}$ for $X\in \mathcal{B}(\mathcal{H})$. An operator $A\in \mathcal{B}(\mathcal{H})$ is a commutator if $A=[S, T]=ST-TS$ for some $S, T\in \mathcal{B}(\mathcal{H})$. Let $X, Y \in \mathcal{B}(\mathcal{H})$ and $X\geq 0$. If the operator $XY$ is a non-commutator, then $X^pYX^{1-p}$ is a non-commutator for every $00$ then $|A|^q$ is a non-commutator for every $q>0$. Let $\mathcal{H}$ be separable and $A \in \mathcal{B}(\mathcal{H})$ be a non-commutator. If $A$ is hyponormal (or cohyponormal) then $A$ is normal. We also present results in the case of a finite-dimensional Hilbert space.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button