مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

1,155
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

EXTRACTING THE "DIGITAL TERRAIN MODEL" FROM THE POINT CLOUD BY PRESENTING A PROGRESSIVE MORPHOLOGICAL METHOD

Pages

  53-65

Abstract

 The DIGITAL TERRAIN MODEL (DTM) is a statistical presentation of the earth surface using some points with predefined 3D coordinates. Extracting the DTM as an important product of photogrammetry and remote sensing that is the basis of many practical projects, has always been considered for experts. LiDAR is a powerful equipment that can provide 3D POINT CLOUD with high accuracy from the earth. Nowadays, advances in technology make the generating 3D POINT CLOUD from the digital aerial images by dense matching feasible. These POINT CLOUDs represents an approximate Digital Surface Model (DSM) of the earth. The DSM contains both terrain points and off-terrain points, but the DTM contains only the terrain points. In other words, the DTM presents a bare earth without any natural and artificial objects. Generating the DTM using the DSM is a challenging topic in photogrammetry and remote sensing. In this paper an algorithm with two independent approaches is proposed. Before beginning the process, the irregular POINT CLOUDs was gridded, interpolate and convert to the image by specifying a point interval. The first proposed approach was a progressive morphological filter that detect the off-terrain points from the DSM. This approachused the simple morphological filter in a specific procedure with four steps. In the first step, a minimal surface was generated by identifying the points which have minimum elevation in predefine scan windows. The STRUCTURAL ELEMENT of the morphological filters should be determined. As it is a progressive filter, a vector that contains the STRUCTURAL ELEMENTs sizes was determined in the second step. In the third step, a morphological opening was applied on the POINT CLOUD with a STRUCTURAL ELEMENT accordance with the produced vector in step1. For each window size in the vector, an elevation threshold was calculated by multiplying the interval distance and supplied slope parameter. Then, the difference between initial surface and the result of applying the morphological opening was computed. The points with difference value more than the calculated elevation threshold was selected as off-terrain points. In the second approach an iterative procedure was designed which was based on morphological filters. The geodesic dilation was a combination of traditional morphological filter. Although the morphological filters operated based on the image and STRUCTURAL ELEMENT, geodesic dilation operated with two images including the mask and the marker. In geodesic dilation of size one the marker image was dilated by an elementary isotropic STRUCTURAL ELEMENT and the resulting image was forced to remain below the mask image. In other words, the mask image acts as a limitation for the dilated marker image. Image reconstructing using geodesic dilation on an image was done by performing some successive geodesic dilations on the image. The results of geodesic dilation was depending on the elevation value. If this value was low, only the building ridge line was extracted and off-ground. Moreover, if the elevation value was high, some of the bare earth was cut as off-terrain, wrongly. Hence, an iterative procedure was proposed to make the extracting the most of the object possible. In this way, the probability of error was reduced. In each loop, the elevation value was increased and some objects was extracted using geodesic dilation. Among the extracted parcels in each loop, the parcels which have local range variation more than a threshold were selected and the others were removed. The local range variation for each point was computed by specifying a window and calculating the difference between maximum and minimum elevation value in that window. This procedure was repeated till analyzing all of the elevation values. Finally, the results of detecting the off terrain points using the both of approach were accumulated to acquire the final class of off-terrain points. Then this points were removed and the cubic interpolation was employed in order to retrieval the elevation of the losses points and generate the DTM. In order to analyze the performance of the proposed algorithm, 7 test area was used. The POINT CLOUD of area 1, 2 and 3 were produced using dense matching of digital aerial images (Ultracam) by National Geography Organization of Iran. The point spacing of these areas is about 0.5 meter. The POINT CLOUD of area 4, 5, 6 and 7 were captured using LiDAR by International Society for Photogrammetry and Remote Sensing. The point spacing of these areas were 3, 1, 2.5 and 3 meter, respectively. The data set covered the most of the features such as steep slopes, mixture of vegetation and building, bridge underpass, road and building with various roof shape. Evaluating the performance of proposed algorithm represented the 4.85% error for extracting the off-terrain points and 0.68 meter error for generated DTM in all test areas, averagely. The evaluation results clarify the ability of proposed practical algorithm in generating the DTM using the DSM.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    AMINI AMIRKOLAEE, HAMED, ENAYATI, HAMID, & VEISI, MARYAM. (2017). EXTRACTING THE "DIGITAL TERRAIN MODEL" FROM THE POINT CLOUD BY PRESENTING A PROGRESSIVE MORPHOLOGICAL METHOD. GEOGRAPHICAL DATA, 26(102 ), 53-65. SID. https://sid.ir/paper/253255/en

    Vancouver: Copy

    AMINI AMIRKOLAEE HAMED, ENAYATI HAMID, VEISI MARYAM. EXTRACTING THE "DIGITAL TERRAIN MODEL" FROM THE POINT CLOUD BY PRESENTING A PROGRESSIVE MORPHOLOGICAL METHOD. GEOGRAPHICAL DATA[Internet]. 2017;26(102 ):53-65. Available from: https://sid.ir/paper/253255/en

    IEEE: Copy

    HAMED AMINI AMIRKOLAEE, HAMID ENAYATI, and MARYAM VEISI, “EXTRACTING THE "DIGITAL TERRAIN MODEL" FROM THE POINT CLOUD BY PRESENTING A PROGRESSIVE MORPHOLOGICAL METHOD,” GEOGRAPHICAL DATA, vol. 26, no. 102 , pp. 53–65, 2017, [Online]. Available: https://sid.ir/paper/253255/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button