مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

474
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Using Dynamic Pulse Function for Semantic 3D modeling of Historical Landmarks

Pages

  167-177

Abstract

 The pulse function (PF) is a technique based on procedural preprocessing system to generate a computerized virtual photo of the faç ade with in a fixed square size. Dynamic Pulse Function (DPF) is an enhanced version of PF which can create the final photo, proportional to real geometry. This can avoid distortion while projecting the computerized photo on the generated 3D model. The challenging issue that might be handled for having 3D model in LoD3 rather than LOD2, is the final aim that have been achieved in this paper. In this research the parameters of Dynamic Pulse Functions are utilized via Ruby programming language in SketchUp Trimble to generate (exact position and deepness) the windows and doors automatically in LoD3 based on the same concept of DPF. The advantage of this technique is automatic generation of huge number of similar geometries e. g. windows by utilizing parameters of DPF along with defining entities and window layers. In case of converting the SKP file to CityGML via FME software or CityGML plugins the 3D model contains the semantic database about the entities and window layers which can connect the CityGML to MySQL. The concept behind DPF, is to use logical operations to project the texture on the background image which is dynamically proportional to real geometry. The process of projection is based on two vertical and horizontal dynamic pulses starting from upper-left corner of the background wall in down and right directions respectively based on image coordinate system. The logical one/zero on the intersections of two vertical and horizontal dynamic pulses projects/does not project the texture on the background image. It is possible to define priority for each layer. For instance the priority of the door layer can be higher than window layer which means that window texture cannot be projected on the door layer. Orthogonal and rectified perpendicular symmetric photos of the 3D objects that are proportional to the real faç ade geometry must be utilized for the generation of the output frame for DPF. The DPF produces very high quality and small data size of output image files in quite smaller dimension compare with the photorealistic texturing method. The disadvantage of DPF is its preprocessing method to generate output image file rather than online processing to generate the texture within the 3D environment such as CityGML. Furthermore the result of DPF can be utilized for 3D model in LOD2 rather than LOD3. In the current work the Random Textures of the window layers are created based on parameters of DPF within Ruby console of SketchUp Trimble to generate the deeper geometries of the windows and their exact position on the faç ade automatically along with Random Textures to increase Level of Realism (LoR). As the output frame in DPF is proportional to real geometry (height and width of the faç ade) it is possible to query the XML database and convert them to units such as meter automatically. In this technique, the perpendicular terrestrial photo from the faç ade is rectified by employing projective transformation based on the frame which is in constrain proportion to real geometry. The rectified photos which are not suitable for texturing but necessary for measuring, can be resized in constrain proportion to real geometry before measuring process. Height and width of windows, doors, horizontal and vertical distance between windows from upper left corner of the photo dimensions of doors and windows are parameters that should be measured to run the program as a plugins in SketchUp Trimble. The system can use these parameters and texture file names and file paths to create the faç ade semi-automatically. To avoid leaning geometry the textures of windows, doors, etc, should be cropped and rectified from perpendicular photos, so that they can be used in the program to create the whole faç ade along with its geometries. Texture enhancement should be done in advance such as removing disturbing objects, exposure setting, left-right up-down transformation, and so on. In fact, the quality, small data size, scale and semantic database for each faç ade are the prominent advantages of this method.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Alizadehashrafi, Behnam, & Roohi, Samad. (2019). Using Dynamic Pulse Function for Semantic 3D modeling of Historical Landmarks. JOURNAL OF RESEARCH ON ARCHAEOMETRY, 5(1 ), 167-177. SID. https://sid.ir/paper/264081/en

    Vancouver: Copy

    Alizadehashrafi Behnam, Roohi Samad. Using Dynamic Pulse Function for Semantic 3D modeling of Historical Landmarks. JOURNAL OF RESEARCH ON ARCHAEOMETRY[Internet]. 2019;5(1 ):167-177. Available from: https://sid.ir/paper/264081/en

    IEEE: Copy

    Behnam Alizadehashrafi, and Samad Roohi, “Using Dynamic Pulse Function for Semantic 3D modeling of Historical Landmarks,” JOURNAL OF RESEARCH ON ARCHAEOMETRY, vol. 5, no. 1 , pp. 167–177, 2019, [Online]. Available: https://sid.ir/paper/264081/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top