مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

330
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

163
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

INCORPORATION OF COS NANOPARTICLES INTO ZSM-5 ZEOLITE BY HYDROTHERMAL AND ION EXCHANGE METHODS

Pages

  612-619

Abstract

 Cobalt sulfide nanoparticles were introduced into the medium-pore zeolite ZSM-5 (Zeolite Scony Mobil Five) by ion exchange in aqueous suspension and also by the addition of cobalt sulfate to the synthesis gel in hydrothermal zeolite synthesis. The latter method was systematically studied in the presence of tetraethyl ammonium ions as organic agents. The materials were characterized by chemical analysis, x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), energy dispersion x-ray (EDX), IR, BET and diffuse reflectance spectroscopy (DRS). SEM picture and BET were used to discriminate between COS NANOPARTICLES in the zeolite pores and on the outer crystal surface. Their crystalline structure and morphology were studied by XRD and scanning electron microscopy. The results showed that in HYDROTHERMAL METHOD zeolite acts as a template. COS NANOPARTICLES with an approximate size of 22 nm grow on the surface of zeolite. In ion exchange method, however, the majority of COS NANOPARTICLES are about 6 nm in diameter, located on the surface of the MFI (type materials ZSM-5) structure. Exciton absorption peaks at higher energy than the fundamental absorption edge of bulk CoS indicate quantum confinement effect in nanoparticles as a consequence of their small size. The absorption spectra show that the optical band gap for COS NANOPARTICLES produced by hydrothermal and ion exchange methods is 3.68 and 4.1 eV, respectively.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    SOHRABNEZHAD, S., POURAHMAD, A., & ZANJANCHI, M.A.. (2009). INCORPORATION OF COS NANOPARTICLES INTO ZSM-5 ZEOLITE BY HYDROTHERMAL AND ION EXCHANGE METHODS. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY(JICS), 6(3), 612-619. SID. https://sid.ir/paper/282343/en

    Vancouver: Copy

    SOHRABNEZHAD S., POURAHMAD A., ZANJANCHI M.A.. INCORPORATION OF COS NANOPARTICLES INTO ZSM-5 ZEOLITE BY HYDROTHERMAL AND ION EXCHANGE METHODS. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY(JICS)[Internet]. 2009;6(3):612-619. Available from: https://sid.ir/paper/282343/en

    IEEE: Copy

    S. SOHRABNEZHAD, A. POURAHMAD, and M.A. ZANJANCHI, “INCORPORATION OF COS NANOPARTICLES INTO ZSM-5 ZEOLITE BY HYDROTHERMAL AND ION EXCHANGE METHODS,” JOURNAL OF THE IRANIAN CHEMICAL SOCIETY(JICS), vol. 6, no. 3, pp. 612–619, 2009, [Online]. Available: https://sid.ir/paper/282343/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button