مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

568
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Geochemical processes affecting groundwater chemistry in Khosh_yailagh carbonate formation, north of Iran

Pages

  219-231

Abstract

 Introduction Carbonate formations (including karst springs and wells), have important role in supplying domestic and irrigation water in our country. Along with the exploitation of these resources, it is required to be considered geochemical characteristics and factors affecting water quality changes. Khosh-Yailagh carbonate formation is a formation of Devonian age in the north of Iran. The outcrops are located in mountainous areas and in the margins of Gorganroud plain. The local base level of erosion is high due to particular tectonic behavior. Because of low thickness and coarse texture of alluvium, well yields are not respond to different uses. Groundwater hydrochemical assessment is usually based on a set of comprehensive information about the chemistry of groundwater. Chemistry of groundwater is affected by different factors such as geology, climate, type of rock weathering reactions, and recharge water quality (Guler et al, 2004; Subramani et al, 2005; Coetsiers, 2006). The purpose of this study is to evaluate the evolution of geochemical processes and water quality of Khosh-Yailagh carbonate formation. Water quality graphic methods, multivariate statistical methods, hierarchical cluster analysis (HCA), principal components factor analysis (PCA) and chemical mass balance were used in determination of hydrochemical parameters and assessing geochemical process of water of carbonate formation. Materials and Methods The study area located in the east Alborz structural-sedimentary zone in Golestan province, north of Iran between the N36º 48' 00" to S37º 00'00" and W54º 47'00" to W55º 08'00". Minimum height in the region of 118 meters and a maximum altitude is 1834 meters. Various formations outcrop in the study area. Khosh-Yailagh is the most important of these formations, which is carbonate with karst development potential. 20 water samples were collected from springs. Field analysis of Temperature, pH and conductivity was done when the sample is collected. The major elements (Na+, Ca2+, Mg2+, K+, Cl-, SO42-, HCO3-, NO3-) were analyzed in the lab using standard methods. Composite diagrams were used to indicate relation between different ions. The statistical technique of multivariate analysis was used to characterize hydrochemical processes through data reduction and classification. The factor analysis derived principal components from a correlation matrix and rotated axes with a quartimin rotation. Discussion of Result All of the groundwater samples are low salinity with electrical conductance ranges from 220 to 706μ s. All groundwater samples have carbonate-Calcium type. Clustering analysis was used for combining cases (water samples) into clusters. This clustering routine resulted in three groups of water samples on the basis of variables (pH, EC and major elements). Group 1: low salinity waters (309 ≤ EC ≤ 589μ s) (samples 1, 2, 5, 10, 11, 12, 13, 14, 18, and 20). Average TDS of this group is 41. 27 mg/l. Group 2: low salinity waters (451 ≤ EC ≤ 538μ s) (samples 4, 7, 8, 15 and 16). Average TDS of this group is 37. 22 mg/l. Group 3: electrical conductance of this group ranges between 495 to 706μ s. This group contains samples 3, 6, and 19. These samples indicate more water-rock interaction. Groups 1 and 2 are more similar and could be consider as one group. Most measured parameters showed weak correlation, which is the evidence on the effects of different processes in the water chemistry. Factor analysis was applied to identify the dominant processes controlling major chemical components of groundwater. The variables for factor analysis were Na+, K+, Mg2+, Ca2+, HCO3-, Cl-, SO42-, EC and pH. The virmax orthogonal rotation method was applied. Four factors are extracted to represent the contributions influencing chemical composition of groundwater (Table 1). The variables of TDS and Ca, have high positive loading of factor 1. The variables K and HCO3 have high positive loading of factor 2. The factor loading of pH show high positive value on factor 3. The variables Na and Cl have positive loadings on factors 4. Table 1. Results of principle component analysis VARIABLES Component P1 P2 P3 P4 TDS. 916. 507-. 770-. 040 pH-. 082. 007. 969. 017 Ca. 895. 263-. 004. 009 Mg-. 907. 316. 211. 056 Na-. 306. 195-. 325. 785 K. 190. 844-. 199. 131 HCO3-. 211. 774-. 015. 287 Cl. 193. 201. 335. 796 % of variance 24. 072 23. 207 20. 463 17. 252 Ion-exchange reactions occurs, both positive and negative direction that depends on the flow distribution and mixing of groundwater. In order to understand the dominant lithology of environment in which water is flowing, the molar ratio of calcium and magnesium was used. Molar ratio of 1. 44 represents interaction of water with dolomitic limestone and dolomite formations. Saturation indices of calcite, dolomite and gypsum indicate that the groundwater is not at the chemical evolution. The processes that govern changes in the groundwater composition, as interpreted from the factor analysis are mainly determined. In plotted Gibbs diagram, the water samples lie in field of water rock interaction. Dissolution and precipitation of carbonate minerals is the main factor controlling chemistry of groundwater in the study area. Cation exchange processes influence the concentration of cation such as Ca, Mg and Na. Rainwater that is charged with biogenic and atmospheric CO2 is another component determines chemistry of groundwater in the recharge area.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    REZAEI, MOHSEN, Zivari, Rashid, ASHJARI, JAVAD, & Kaboli, Abdolreza. (2017). Geochemical processes affecting groundwater chemistry in Khosh_yailagh carbonate formation, north of Iran. JOURNAL OF ENVIRONMENTAL STUDIES, 43(2 ), 219-231. SID. https://sid.ir/paper/2941/en

    Vancouver: Copy

    REZAEI MOHSEN, Zivari Rashid, ASHJARI JAVAD, Kaboli Abdolreza. Geochemical processes affecting groundwater chemistry in Khosh_yailagh carbonate formation, north of Iran. JOURNAL OF ENVIRONMENTAL STUDIES[Internet]. 2017;43(2 ):219-231. Available from: https://sid.ir/paper/2941/en

    IEEE: Copy

    MOHSEN REZAEI, Rashid Zivari, JAVAD ASHJARI, and Abdolreza Kaboli, “Geochemical processes affecting groundwater chemistry in Khosh_yailagh carbonate formation, north of Iran,” JOURNAL OF ENVIRONMENTAL STUDIES, vol. 43, no. 2 , pp. 219–231, 2017, [Online]. Available: https://sid.ir/paper/2941/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button