مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Journal Paper

Paper Information

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

748
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

SEPARATING THE SUNGUN COPPER DEPOSIT ALTERATION ZONES BY APPLYING ARTIFICIAL NEURAL NETWORK

Pages

  41-46

Abstract

 Separation of ALTERATION zones is one of the important processes in evaluation and identification of mining activities that provide great help to have better view of the region and its mineralization. Most of the ALTERATION separation is based on petrological investigations and the other methods are less applied. Therefore, in this research, there is an attempt by applying RBPNN (Radial Basis PROBABILISTIC Neural Network) to separate these ALTERATION zones. Because of the special structure and easy designing of these networks, they are usually capable to solve the classification problem. The input data were 28 element analyses related to 45 geochemical samples and its outputs were classified ALTERATION zones (potassic, transition, phyllic) that was coding for every inputs data. After selection the training and testing data, the network has been prepared for training and then the data were inputs and the results were outputs. According to the results, the network could distinguish the difficult spatial relation between the inputs, with 28 spatial variables and classify those correctly. The calculated MSE (Mean Square Error) is 0.0163, which shows the good performance of network in this field.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    HEZARKHANI, A., TAHMASBI, P., & ASGHARI, O.. (2010). SEPARATING THE SUNGUN COPPER DEPOSIT ALTERATION ZONES BY APPLYING ARTIFICIAL NEURAL NETWORK. GEOSCIENCES, 20(77), 41-46. SID. https://sid.ir/paper/32288/en

    Vancouver: Copy

    HEZARKHANI A., TAHMASBI P., ASGHARI O.. SEPARATING THE SUNGUN COPPER DEPOSIT ALTERATION ZONES BY APPLYING ARTIFICIAL NEURAL NETWORK. GEOSCIENCES[Internet]. 2010;20(77):41-46. Available from: https://sid.ir/paper/32288/en

    IEEE: Copy

    A. HEZARKHANI, P. TAHMASBI, and O. ASGHARI, “SEPARATING THE SUNGUN COPPER DEPOSIT ALTERATION ZONES BY APPLYING ARTIFICIAL NEURAL NETWORK,” GEOSCIENCES, vol. 20, no. 77, pp. 41–46, 2010, [Online]. Available: https://sid.ir/paper/32288/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button