مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

353
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Drought Estimate Using Artificial Network Estimation Drought Using Intelligent Networks

Pages

  179-197

Abstract

 Background And Objective: Drought is one of the phenomena of climate that occurs in all climatic conditions and in all parts of the planet. Drought prediction has an important role in designing and managing natural resources, water resource systems, and determining the plant's water requirement. For estimating Drought, various approaches have been introduced in hydrology that artificial models are the most important ones. In this study for evaluating the accuracy of the models in estimating the 12-month standard rainfall index, monthly data from four weather stations in Boroujerd, Dorood, Selseleh and Dolphan in Lorestan province have been used. For modeling of Drought in these stations utilized Wavelet Neural Network and artificial neural network models and the results were compared to each other for the accuracy of the studied models. In a few studies, each of the models presented in the Drought estimation has been studied. But the purpose of this research is simultaneous analysis of these models at four stations for estimating the standard rainfall index. Methods: In this study, Boroujerd, Dorood, Selseleh and Dolphan that located in Lorestan province have been selected as the study area During the statistical period, the Precipitation parameter was used at monthly time scale (1962-1372) for input and standard rainfall index as the output parameter of the models. For this purpose, at first 80% of the data (1372-1382) were selected for calibration of the models and 20% of the data (2012-2013) were used to validate the models. The Wavelet Neural Network, which has a very good fit with the sinusoidal equations by separating the signal into high and low frequencies, can greatly increase the accuracy of the model and reduce noise. Artificial neural networks are inspired by the brain information processing system that ability to approximate patterns of a model has increased the scope of these networks. Correlation coefficient, root mean square error and mean absolute error value were used for evaluation and performance of the models. Results: The results showed that both models have good performance in estimating the standard rainfall index in the four stations studied. Also, according to the evaluation criteria, the Wavelet Neural Network model was found to have the highest accuracy and low error rate compared to the artificial neural network model. Conclusions: In total, the results showed that the use of Wavelet Neural Network model can be effective in estimating the standard rainfall index. also It can be useful in facilitating the development and implementation of management strategies to prevent Drought and is a step in making managerial decisions to improve water resources.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Torabipodeh, Hassan, Shahinejad, Babak, & DEHGHANI, REZA. (2018). Drought Estimate Using Artificial Network Estimation Drought Using Intelligent Networks. HYDROGEOMORPHOLOGY, 4(14 ), 179-197. SID. https://sid.ir/paper/387788/en

    Vancouver: Copy

    Torabipodeh Hassan, Shahinejad Babak, DEHGHANI REZA. Drought Estimate Using Artificial Network Estimation Drought Using Intelligent Networks. HYDROGEOMORPHOLOGY[Internet]. 2018;4(14 ):179-197. Available from: https://sid.ir/paper/387788/en

    IEEE: Copy

    Hassan Torabipodeh, Babak Shahinejad, and REZA DEHGHANI, “Drought Estimate Using Artificial Network Estimation Drought Using Intelligent Networks,” HYDROGEOMORPHOLOGY, vol. 4, no. 14 , pp. 179–197, 2018, [Online]. Available: https://sid.ir/paper/387788/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button