مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

3,098
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

THEORETICAL STUDY OF THE CATALYTIC AND INHIBITION MECHANISM OF THE β-LACTAM ANTIBIOTICS BY METALLO-β-LACTAMASES IN THE DIFFERENT SOLVENTS AND DIFFERENT TEMPERATURES USING QUANTUM MECHANICAL CALCULATIONS

Pages

  239-258

Keywords

METALLO-β-LACTAMASE ENZYMES (MβLS)Q2

Abstract

 The most prevalent and important mechanism of bacterial resistance to b-lactam antibiotics, is the production of b-lactamase enzymes which inactivate these drugs by the hydrolytic cleavage of the four-membered b-lactam ring during two steps which is including the nucleophilic attack of the bridging hydroxide ion on the substrate and eventual protonation of the leaving amine group. During this reaction, metal ions play an important role in the catalytic process. Despite the availability of b-lactamase crystallographic structures, their mechanism of action is still unclear and no clinically useful inhibitors of these enzymes have been reported.Density functional theory (DFT) using B3LYP and 6-31G, 6-31G* and 6-311G** basis sets have been employed to calculate the details of electronic structure and electronic energy of catalytic reaction of CCRA ENZYME active center from metallo-b-lactamase enzymes (MbLs), PENICILLIN from β-lactam antibiotics, and the formed complexes including ES, ETS1, EI1, EI2, ETS2 and EP respectively, has been used. Also all the THERMODYNAMIC FUNCTIONS including DHo, DSo and DGo to form two transition states, ETS1 and ETS2, and for the total reaction are evaluated at 25oC, 31oC, 37oC and 40oC and 1 atmosphere pressure. In all calculations solvent effects have been considered by using PCM method for water, ethanol, protein environment, nitro methane and carbon tetrachloride. Finally this reaction proceeds during an exothermic and spontaneous process, and the first step, the nucleophilic attack of the bridging hydroxide ion on the substrate, is the rate-limiting step.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    GHIASI, M., NOOHI, B., & ZAHEDI, M.. (2015). THEORETICAL STUDY OF THE CATALYTIC AND INHIBITION MECHANISM OF THE β-LACTAM ANTIBIOTICS BY METALLO-β-LACTAMASES IN THE DIFFERENT SOLVENTS AND DIFFERENT TEMPERATURES USING QUANTUM MECHANICAL CALCULATIONS. JOURNAL OF SCIENCE (KHARAZMI UNIVERSITY), 14(4), 239-258. SID. https://sid.ir/paper/43916/en

    Vancouver: Copy

    GHIASI M., NOOHI B., ZAHEDI M.. THEORETICAL STUDY OF THE CATALYTIC AND INHIBITION MECHANISM OF THE β-LACTAM ANTIBIOTICS BY METALLO-β-LACTAMASES IN THE DIFFERENT SOLVENTS AND DIFFERENT TEMPERATURES USING QUANTUM MECHANICAL CALCULATIONS. JOURNAL OF SCIENCE (KHARAZMI UNIVERSITY)[Internet]. 2015;14(4):239-258. Available from: https://sid.ir/paper/43916/en

    IEEE: Copy

    M. GHIASI, B. NOOHI, and M. ZAHEDI, “THEORETICAL STUDY OF THE CATALYTIC AND INHIBITION MECHANISM OF THE β-LACTAM ANTIBIOTICS BY METALLO-β-LACTAMASES IN THE DIFFERENT SOLVENTS AND DIFFERENT TEMPERATURES USING QUANTUM MECHANICAL CALCULATIONS,” JOURNAL OF SCIENCE (KHARAZMI UNIVERSITY), vol. 14, no. 4, pp. 239–258, 2015, [Online]. Available: https://sid.ir/paper/43916/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button