مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

438
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

228
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

EFFECTS OF EXCESS COBALT OXIDE NANOCRYSTALLITES ON LACO3 CATALYST ON LOWERING THE LIGHT OFF TEMPERATURE OF CO AND HYDROCARBONS OXIDATION

Pages

  71-77

Abstract

 Catalysts with the formula of LaCo(1+x)O(3+d), where 0£x£1, were studied for OXIDATION of CO and C2H6 in a synthetic EXHAUST GAS, comprising 6.0% CO and 0.2% C2H6 in Ar. Ethane was selected as a model for HYDROCARBONs in the EXHAUST GAS. The performance of catalysts is correlated to their properties, particularly their redox in oxidizing and reducing atmospheres. XRD patterns show PEROVSKITE structure for all catalysts. The Co3O4 crystallite size was calculated using the Scherrer’s equation. TPR results show the reduction of Co3O4 and cobalt oxide in PEROVSKITE structure in the range of 330 – 475oC and 550 - 650oC, respectively. Disappearance of the cobalt oxide structure in XRD patterns of LaCo(1£x£1.3)O(3+d) catalysts are attributed to small size of the cobalt oxide crystallites. Redox properties of catalysts were also studied by electrical CONDUCTIVITY measurements. Similar Arrhenius-type electrical CONDUCTIVITY behaviors of catalysts with that of cobalt oxide indicates that the cobalt component is essential for charge carrier mobility in LaCo(1+x)O(3+d) catalysts. Catalyst with 0.3 mole excess cobalt, i.e. LaCo1.3O(3+d), which shows the lowest activation energy of electrical CONDUCTIVITY (Ec) and the lowest ratio of conductivities in reducing to oxidizing atmospheres, has the lowest LIGHT OFF TEMPERATUREs for OXIDATION of both CO and ethane. High ability of catalysts in gas phase-lattice oxygen transfer is evidenced by the fast reduction and OXIDATION behaviors of catalysts in CO and air atmosphere, respectively.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    ABADIAN, L., MALEKZADEH, AZIM, KHODADADI, ABAS, & YAD ELAH, M.. (2008). EFFECTS OF EXCESS COBALT OXIDE NANOCRYSTALLITES ON LACO3 CATALYST ON LOWERING THE LIGHT OFF TEMPERATURE OF CO AND HYDROCARBONS OXIDATION. IRANIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (IJCCE), 27(4), 71-77. SID. https://sid.ir/paper/551277/en

    Vancouver: Copy

    ABADIAN L., MALEKZADEH AZIM, KHODADADI ABAS, YAD ELAH M.. EFFECTS OF EXCESS COBALT OXIDE NANOCRYSTALLITES ON LACO3 CATALYST ON LOWERING THE LIGHT OFF TEMPERATURE OF CO AND HYDROCARBONS OXIDATION. IRANIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (IJCCE)[Internet]. 2008;27(4):71-77. Available from: https://sid.ir/paper/551277/en

    IEEE: Copy

    L. ABADIAN, AZIM MALEKZADEH, ABAS KHODADADI, and M. YAD ELAH, “EFFECTS OF EXCESS COBALT OXIDE NANOCRYSTALLITES ON LACO3 CATALYST ON LOWERING THE LIGHT OFF TEMPERATURE OF CO AND HYDROCARBONS OXIDATION,” IRANIAN JOURNAL OF CHEMISTRY AND CHEMICAL ENGINEERING (IJCCE), vol. 27, no. 4, pp. 71–77, 2008, [Online]. Available: https://sid.ir/paper/551277/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button