مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Seminar Paper

Paper Information

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

119
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

101
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Seminar Paper

Title

QSAR STUDY OF INHIBITORY ACTIVITIES (EC50) OF AZABENZENES DERIVATIVES USING BAYESIAN REGULARIZED ARTIFICIAL NEURAL NETWORK (BR-ANN) AND CALCULATED DESCRIPTORS

Pages

  -

Keywords

BAYESIAN REGULARIZED (BR) 
ARTIFICIAL NEURAL NETWORK (ANN) 

Abstract

 IN THIS ARTICLE, AZABENZENES DERIVATIVES AS POTENT HIV-1 NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS ANALYSED WITH MOLECULAR DOCKING AND QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP STUDY (QSAR) [1-2]. ...

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    MOZAFARI, Z., ARAB CHAMJANGALI, M., & ARASHI, M.. (2016). QSAR STUDY OF INHIBITORY ACTIVITIES (EC50) OF AZABENZENES DERIVATIVES USING BAYESIAN REGULARIZED ARTIFICIAL NEURAL NETWORK (BR-ANN) AND CALCULATED DESCRIPTORS. IRANIAN SEMINAR OF ANALYTICAL CHEMISTRY. SID. https://sid.ir/paper/942161/en

    Vancouver: Copy

    MOZAFARI Z., ARAB CHAMJANGALI M., ARASHI M.. QSAR STUDY OF INHIBITORY ACTIVITIES (EC50) OF AZABENZENES DERIVATIVES USING BAYESIAN REGULARIZED ARTIFICIAL NEURAL NETWORK (BR-ANN) AND CALCULATED DESCRIPTORS. 2016. Available from: https://sid.ir/paper/942161/en

    IEEE: Copy

    Z. MOZAFARI, M. ARAB CHAMJANGALI, and M. ARASHI, “QSAR STUDY OF INHIBITORY ACTIVITIES (EC50) OF AZABENZENES DERIVATIVES USING BAYESIAN REGULARIZED ARTIFICIAL NEURAL NETWORK (BR-ANN) AND CALCULATED DESCRIPTORS,” presented at the IRANIAN SEMINAR OF ANALYTICAL CHEMISTRY. 2016, [Online]. Available: https://sid.ir/paper/942161/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button