مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

203
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Semi-automated identification of landforms using fuzzy object-based satellite image analysis-Case study: Maku County

Pages

  77-91

Abstract

 Introduction: Landforms represent influential processes affecting features on the earth’ s surface both in the past and in the present while providing important information about the characteristics and potentials of the earth. The shape of the terrain and features such as landforms affect the flow in water bodies, sediment transport, soil production, and climate at a local and regional scale. Identification and classification of landforms are among the most important purposes of geomorphological maps and also a fundamental step in the process of producing such maps. Geomorphologists have always been interested in achieving a proper and accurate classification of landforms in which their morphometric properties and construction processes are clearly indicated. The present study has attempted to develop a new method and identify the relationship between morphometry of landforms and surface processes using a multi-scale and object-based analysis. Extraction and classification of landforms are especially important in mountainous areas, which are considered to be dynamic due to their special physical and climatic conditions. These areas are often remote and sometimes unknown. Mountainous topography has also made them difficult to access. However, they are of great importance due to their impact on the macro-regional system. Because of this significant importance, Maku County was selected as the study area. Materials and methods: Maku County is located in northwestern Iran (West Azerbaijan Province) which borders Qarasu River and Turkey in the north, Aras River and the Republic of Azerbaijan in the east, Turkey in the west, and Shut County in the south. This County is located between 44° 17' and 44° 52' east longitude and 39° 8' and 39° 46' north latitude. The present study takes advantage of satellite images (sentinel-2A) with a spatial resolution of 10 m, Derivatives of DEM layer (slope, maximum curvature, and minimum curvature, profile and plan curvature) and object-based methods to identify and extract landforms of the study area precisely. Discussion and results: The present study applies various functions and capabilities of OBIA techniques to extract landforms precisely. These functions include texture features (GLCM), average bands in the image, geometric information (shape, compression, density, and asymmetry), brightness index, terrain roughness index (TRI), maximum and minimum curvature, texture, and etc. The image segmentation scale was first optimized in the present study using ESP tools and objects of the image were created on three levels (9, 17, and 27 scales). In the next step, sample landforms were introduced, membership weights were calculated and defined for the classes in accordance with the fuzzy functions, and finally, 14 types of landforms were extracted using object-oriented analysis. Conclusion: Fuzzy method includes boundary conditions, defines membership function, and constantly considers landform changes in class definition. Thus, it seems to be ideal for the purpose of the present study. The present study used two types of data (data derived from satellite imagery and DEM layer) along with OBIA approach to extract landforms. Classification of landforms based on fuzzy theory makes it possible to collect more comprehensive information from the earth's surface. Results indicate that fuzzy object-based method has classified landforms with an accuracy of 87% and a kappa index of 85%. Considering the resolution of the images applied in the present study, all features were extracted with an acceptable accuracy except for debris. This can be attributed to the fact that debris is usually accumulated in a small area on steep mountainsides, and thus remains hidden from satellites in nadir images. OBIA approach shows a high efficiency because it can combine spectral characteristics of various types of data (i. e. images and DEM data) and their derivatives while analyzing the shape of the segment, and size, texture and spatial distribution of segments based on their class and other neighboring segments.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Mohammadzdeh, Keyvan, Hosseini, Sayyed Ahmad, Samadi, Mehdi, Laaliniyat, Ilia, & RAHIMI, MASOUD. (2021). Semi-automated identification of landforms using fuzzy object-based satellite image analysis-Case study: Maku County. GEOGRAPHICAL DATA, 30(118 ), 77-91. SID. https://sid.ir/paper/952789/en

    Vancouver: Copy

    Mohammadzdeh Keyvan, Hosseini Sayyed Ahmad, Samadi Mehdi, Laaliniyat Ilia, RAHIMI MASOUD. Semi-automated identification of landforms using fuzzy object-based satellite image analysis-Case study: Maku County. GEOGRAPHICAL DATA[Internet]. 2021;30(118 ):77-91. Available from: https://sid.ir/paper/952789/en

    IEEE: Copy

    Keyvan Mohammadzdeh, Sayyed Ahmad Hosseini, Mehdi Samadi, Ilia Laaliniyat, and MASOUD RAHIMI, “Semi-automated identification of landforms using fuzzy object-based satellite image analysis-Case study: Maku County,” GEOGRAPHICAL DATA, vol. 30, no. 118 , pp. 77–91, 2021, [Online]. Available: https://sid.ir/paper/952789/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button