In this numerical study, the effects of diesel direct injection timing and using a group-hole nozzle with 10 degrees as divergence angle on combustion and fuel atomization characteristics, pollutant emissions, and performance in a heavy duty diesel engine have been investigated. Regarding compression ignition combustion simulation, a chemical kinetic mechanism consists of 61 species, and 296 reactions have been used. Results showed that with a decrease in ignition delay duration, most of the fuel burnt in diffusive mode, combustion process weakened, PM increased, and engine performance deteriorated. Also, by retarding the diesel injection timing simultaneous with an increase in in-cylinder pressure and temperature, relative span factor has been decreased. With the reduction of fuel spray width, diesel fuel droplets sprayed in a narrower region, and due to the high density of the spray region, more fuel droplets collide. In the following because of the increase in coagulation volume, PM increased. Furthermore, using group-hole nozzle strategy can improve fuel oxidation process but results in more UHC emission compared with the baseline case which must be considered as a disadvantage of using group hole nozzle concept.