در شبکه های عصبی مصنوعی (ANN) روش های موجود آموزش و واسنجی عصبی بر اساس ساختار پرسپترون چندلایه ای می باشد، لیکن این روش ها دارای مشکلات ناشی از عدم همگرایی در روش های یادگیری، عدم ثبات اوزان شبکه در شرایطی که طیف داده های ورودی دارای انحراف معیار بزرگ بوده و بالاخره نیاز به داده و اطلاعات فراوان جهت آموزش شبکه می باشند. برای غلبه بر مشکلات فوق در این تحقیق روش جدید ترکیبی شبکه عصبی مصنوعی – بهینه سازی ریاضی غیرخطی ارایه شده و شبکه عصبی مصنوعی که با استفاده از روش پس انتشار خطا طراحی گردیده بهعنوان ابزارقدرتمندی برای برآورد میزان رسوب مخزن سد اکباتان معرفی شده است. بر این اساس با استفاده از معادله بین دبی رسوب و جریان آب رودخانه آبشینه و آمار ایستگاه یالفان مدل طراحی شده ANN با گره های مختلف در لایه ها ورودی ها و لایه مخفی اجرا گردید. نتایج واسنجی نشان می دهد برای توزیع رسوب در مخزن سد اکباتان بایستی از شش گره در لایه ورودی و هشت گره در لایه مخفی استفاده نمود. دراین تحقیق رابطه رضایت بخشی بین تعداد مولفه های لایه مخفی با تعداد داده های آموزش و تعداد مولفه های ورودی تعیین شده است.