Aims Microorganisms are present not only in common environment, but also in extreme environments. Salt lakes with near or at saturating salinity are spread all over the world. Urmia Salt Lake is one of these hypersaline environments. The present study aimed at evaluating prokaryotic diversity in hypersaline environment by culture-independent method. Materials & Methods In this experimental study, different regions of Urmia Lake were sampled and the genomic material extracted from the water sample was used as a pattern for the amplification of 16S rDNA and a fragment of the bop gene via polymerase chain reaction. By cloning, each of the amplified fragments belonging to a single strain was amplified by T/A cloning vector. To further investigate the biodiversity of Haloarchaea, the biodiversity of bop gene was studied in addition to studying 16S rDNA. Findings By cloning and sequencing, 6 bacteria genera, including Acaryochloris, Adhaeribacter, Brachybacterium, Gloeocapsopsis, Cesiribacter, and Bacillus were identified. Archaeal library belonged to 5 genera, including Halonotius, Halolamina, Haloquadratum, Halomicroarcula, and Halorhabdus. The clone libraries of bacterial belonged to 4 phyla, including Bacteroidetes, Cyanobacteria, Actinobacteria, and Firmicutes. . The clone libraries of bop gene (as a molecular marker) belonged to genera, including Halorubrum, Natrialba, Haloquadratum, and Natrinema. The bop phylogeny was closely related to the 16S rDNA phylogeny. Conclusion By cloning and sequencing, 6 bacteria genera, including Acaryochloris, Adhaeribacter, Brachybacterium, Gloeocapsopsis, Cesiribacter, and Bacillus were identified. The bop phylogeny is closely related to the 16S rDNA phylogeny.