Salt stress is considered as one of the most important constraints in wheat production worldwide, thus for, research toward development of tolerant varieties is of great importance. Discovering genes and molecular mechanisms involved in salt tolerance are the primary steps in molecular breeding for salinity. In this study, taking advantage of the data deposited in NCBI Gene Bank, two salinity-related microarray data sets of bread wheat were analyzed to identify salt responsive genes. Bioinformatics’ analyses indicated that 3096 and 2060 genes were salt responsive genes in root and shoot, respectively. Gene ontology analysis of salt responsive genes showed that these genes were enriched for response to chemical stimulus, response to oxidative stress, transport, regulation of transcription and carbohydrate metabolic process in biological process category in both tissues. Furthermore, the differentially expressed genes in metabolic process category were enriched for catalytic activity, binding and oxidoreductase activity in both tissues. In order to determine the key genes involved in salt tolerance, hub analysis was performed on the salt responsive genes identified in the root. Based on the achieved results, the role of regulatory genes including protein kinases, protein phosphatases and transcription factors such as MYB and WRKY, was highlighted in inducing salt tolerance.