مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

22
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Presenting a Smart Model for Distinguishing Patients With Thyroid Diseases From Healthy People by Combining Particle Swarm Optimization Algorithm and Artificial Neural Network

Pages

  222-233

Abstract

 2Objective Thyroid diseases are common disorders worldwide. The timely diagnosis and control of this disease can prevent its progression and reduce associated complications. This study proposes a novel hybrid method by combining particle swarm optimization (PSO) algorithm and artificial neural network (ANN) for the timely detection of thyroid disorders. Methods This is an applied survey study, conducted in 2022. In this study, the target population consisted of the data of 400 patients referred to Imam Reza Hospital in Lar County, Iran from 2021 to 2022 which were collected by field study. Among them, 300 had Thyroid disease and 100 were healthy. MATLAB software was used for implementing the proposed Learning model and analyzing the results. Results The regression coefficient of the proposed model in there modes of training, validation, and testing were 0.98, 0.97, and 0.95, respectively. The area under the ROC curve was 0.98, the error rate was 0.004, and the overall accuracy was 96%. Conclusion The proposed model can distinguish patients with Thyroid disease from healthy individuals with acceptable accuracy and low errors. This model can be used as a useful tool in predicting Thyroid diseases.

Cites

  • No record.
  • References

    Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button