مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Journal Paper

Paper Information

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

757
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

BETTER DIAGNOSIS OF HEALTH STATUS IN DRIVERS BY USING ARTIFICIAL NEURAL NETWORK

Pages

  1-12

Abstract

 Introduction: Uncontrolled health status of drivers, can lead to the death of healthy individuals who are living in their best periods of life in terms of performance and wellness and also it can impose huge financial costs on a country. The purpose of this study was to design an intelligent system using Multilayer perceptron (MLP) and radial basis function (RBF) neural networks in order to diagnose drivers’ health status.Methods: In this study, we applied the MLP and RBF networks with some changes in the number of middle layers, neurons, as well as learning algorithms such as Momentum (MOM), Conjugate Gradient (CG), and Levenberg Marquardt (LM) in order to diagnose the health status of the drivers.) Then, the best model was introduced according to the area under receiver operating characteristics (ROC) curve, sensitivity, and precision criteria.Results: In this study, 20 variables were selected as inputs and two variables that include healthy and unhealthy status were determined as output parameters. MLP and RBF neural networks with LM algorithm have the best performance with 66.7% and 29% precision; 97.2% and 100% sensitivity; 91.1% and 86 % accuracy respectively. The area under ROC curve for the nervous system MLP and RBF estimated 91.02 for MLP and 88.1 for RBF.Conclusion: According to this study, the MLP neural network model with the LM learning algorithm compared to the RBF neural network can have an important role in helping physicians in order to diagnose drivers’ health status. Furthermore, such a model can be used in centers of occupational medicine to enhance the accuracy and the speed of diagnosis and reduce costs.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    KOHZADI, Z., SHAHMORADI, L., & SARAEI, M.. (2017). BETTER DIAGNOSIS OF HEALTH STATUS IN DRIVERS BY USING ARTIFICIAL NEURAL NETWORK. OCCUPATIONAL MEDICINE, 9(1), 1-12. SID. https://sid.ir/paper/207096/en

    Vancouver: Copy

    KOHZADI Z., SHAHMORADI L., SARAEI M.. BETTER DIAGNOSIS OF HEALTH STATUS IN DRIVERS BY USING ARTIFICIAL NEURAL NETWORK. OCCUPATIONAL MEDICINE[Internet]. 2017;9(1):1-12. Available from: https://sid.ir/paper/207096/en

    IEEE: Copy

    Z. KOHZADI, L. SHAHMORADI, and M. SARAEI, “BETTER DIAGNOSIS OF HEALTH STATUS IN DRIVERS BY USING ARTIFICIAL NEURAL NETWORK,” OCCUPATIONAL MEDICINE, vol. 9, no. 1, pp. 1–12, 2017, [Online]. Available: https://sid.ir/paper/207096/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button