مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

436
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

624
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

مقایسه مدل ریاضی و شبکه عصبی مصنوعی در تخمین نسبت رطوبت برش های پرتقال طی فرآیند خشک شدن

صفحات

 صفحه شروع 161 | صفحه پایان 174

چکیده

 در تحقیق حاضر, خشک کردن لایه نازک برش های پرتقال در خشک کن هوای داغ آزمایشگاهی مدل سازی گردید. فرایند خشک کردن تحت شرایط متفاوت, سه دمای 50, 60 و 70 C° و سرعت جابه جایی هوای 1/0و 2/0 m/s انجام شد. آنالیز آماری داده ها نشان داد که تغییرات دما و سرعت جابه جایی هوا بر روی نسبت رطوبت اثرات معنی داری 0/05>p داشته, اما اثر متقابل دما و سرعت جابه جایی هوا, اثر معنی دار نداشته است. بنابر نتایج حاصل, کم ترین نسبت رطوبت در برش های پرتقال خشک شده تحت دمای 70 C° و سرعت جابه جایی هوای2/0 m/s به میزان 3/5% به دست آمد. پس از انجام آزمایش ها, داده های حاصل از آزمایش های خشک کردن با 7 مدل شناخته شده ریاضی برازش داده شد. بر اساس نتایج برازش, مدل پیج با بالاترین مقدار ضریب تعیین 0/9992=R2 و 3-10×2/71=RMSE در مقایسه با سایر مدل ها عملکرد بهتری در برآورد نسبت رطوبت, نشان داد. هم چنین, از مدل شبکه عصبی مصنوعی پس انتشار پیش خور برای تخمین نسبت رطوبت برش های پرتقال بر اساس سه متغیر ورودی مدت زمان خشک کردن, دما و سرعت جابه جایی هوا استفاده شد. در طراحی این شبکه از دو تابع آستانه تانژانت هیپربولیک و خطی در لایه پنهان و خروجی استفاده گردید. شبکه عصبی طراحی شده با توپولوژی 1-20-3 و الگوریتم آموزشی لونبرگ-مارکوات بهترین نتایج را با بالاترین مقدار ضریب تعیین 0/9994=R2 و کم ترین مقدار ریشه مجذور خطا 3-10×1/009=RMSE ارائه داد. نتایج نشان داد که شبکه عصبی پرسپترون چند لایه, دارای دقت بالاتری در تخمین نسبت رطوبت برش های پرتقال طی فرایند خشک شدن است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    نیک زاد، مریم، خاورپور، مریم، و موقرنژاد، کامیار. (1397). مقایسه مدل ریاضی و شبکه عصبی مصنوعی در تخمین نسبت رطوبت برش های پرتقال طی فرآیند خشک شدن. فناوری های جدید در صنعت غذا (فناوری های نوین غذایی)، 6(2 )، 161-174. SID. https://sid.ir/paper/258707/fa

    Vancouver: کپی

    نیک زاد مریم، خاورپور مریم، موقرنژاد کامیار. مقایسه مدل ریاضی و شبکه عصبی مصنوعی در تخمین نسبت رطوبت برش های پرتقال طی فرآیند خشک شدن. فناوری های جدید در صنعت غذا (فناوری های نوین غذایی)[Internet]. 1397؛6(2 ):161-174. Available from: https://sid.ir/paper/258707/fa

    IEEE: کپی

    مریم نیک زاد، مریم خاورپور، و کامیار موقرنژاد، “مقایسه مدل ریاضی و شبکه عصبی مصنوعی در تخمین نسبت رطوبت برش های پرتقال طی فرآیند خشک شدن،” فناوری های جدید در صنعت غذا (فناوری های نوین غذایی)، vol. 6، no. 2 ، pp. 161–174، 1397، [Online]. Available: https://sid.ir/paper/258707/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا