مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

363
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

161
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

1

Information Journal Paper

Title

A FAST MODEL FOR PREDICTION OF RESPIRATORY LUNG MOTION FOR IMAGE-GUIDED RADIOTHERAPY: A FEASIBILITY STUDY

Pages

  73-81

Abstract

 Background: The aim of this work was to study the feasibility of constructing a fast thorax model suitable for simulating LUNG MOTION due to respiration using only one CT dataset.Materials and Methods: For each of six patients with different thorax sizes, two sets of CT images were obtained in single-breath-hold inhale and exhale stages in the supine position. The CT images were then analyzed by measurements of the displacements due to respiration in the thorax region. Lung and thorax were 3D reconstructed and then transferred to the ABAQUS software for biomechanical fast finite element (FFE) modeling. The FFE model parameters were tuned based on three of the patients, and then was tested in a predictive mode for the remaining patients to predict lung and thorax motion and deformation following respiration.Results: Starting from end-exhale stage, the model, tuned for a patient created lung wall motion at end-inhale stage that matched the measurements for that patient within 1 mm (its limit of accuracy). In the predictive mode, the mean discrepancy between the imaged landmarks and those predicted by the model (formed from averaged data of two patients) was 4.2 mm. The average computation time in the fast predictive mode was 89 sec.Conclusion: Fast prediction of approximate, lung and thorax shapes in the respiratory cycle has been feasible due to the linear elastic material approximation, used in the FFE model.

Cites

References

  • No record.
  • Cite

    APA: Copy

    ZEHTABIAN, M., FAGHIHI, R., MOSLEH SHIRAZI, M.A., SHAKIBAFARD, A.R., MOHAMMADI, M., & BARADARAN GHAHFAROKHI, M.. (2012). A FAST MODEL FOR PREDICTION OF RESPIRATORY LUNG MOTION FOR IMAGE-GUIDED RADIOTHERAPY: A FEASIBILITY STUDY. INTERNATIONAL JOURNAL OF RADIATION RESEARCH, 10(2), 73-81. SID. https://sid.ir/paper/286588/en

    Vancouver: Copy

    ZEHTABIAN M., FAGHIHI R., MOSLEH SHIRAZI M.A., SHAKIBAFARD A.R., MOHAMMADI M., BARADARAN GHAHFAROKHI M.. A FAST MODEL FOR PREDICTION OF RESPIRATORY LUNG MOTION FOR IMAGE-GUIDED RADIOTHERAPY: A FEASIBILITY STUDY. INTERNATIONAL JOURNAL OF RADIATION RESEARCH[Internet]. 2012;10(2):73-81. Available from: https://sid.ir/paper/286588/en

    IEEE: Copy

    M. ZEHTABIAN, R. FAGHIHI, M.A. MOSLEH SHIRAZI, A.R. SHAKIBAFARD, M. MOHAMMADI, and M. BARADARAN GHAHFAROKHI, “A FAST MODEL FOR PREDICTION OF RESPIRATORY LUNG MOTION FOR IMAGE-GUIDED RADIOTHERAPY: A FEASIBILITY STUDY,” INTERNATIONAL JOURNAL OF RADIATION RESEARCH, vol. 10, no. 2, pp. 73–81, 2012, [Online]. Available: https://sid.ir/paper/286588/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button