مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

370
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

281
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

ON COMULTIPLICATION AND R-MULTIPLICATION MODULES

Pages

  1-19

Abstract

 We state several conditions under which comultiplica-tion and weak Multiplication Module/fa?page=1&sort=1&ftyp=all&fgrp=all&fyrs=all" target="_blank">CoMultiplication Modules are cyclic and study strong Multiplication Module/fa?page=1&sort=1&ftyp=all&fgrp=all&fyrs=all" target="_blank">CoMultiplication Modules and comultiplication rings. In particu-lar, we will show that every faithful weak Multiplication Module/fa?page=1&sort=1&ftyp=all&fgrp=all&fyrs=all" target="_blank">CoMultiplication Module having a maximal submodule over a reduced ring with a nite in-decomposable decomposition is cyclic. Also we show that if M is an strong comultiplication R-module, then R is semilocal and M is nitely cogenerated. Furthermore, we de ne an R-module M to be p-comultiplication, if every nontrivial submodule of M is the annihilator of some prime ideal of R containing the annihila-tor of M and give a characterization of all cyclic p-Multiplication Module/fa?page=1&sort=1&ftyp=all&fgrp=all&fyrs=all" target="_blank">CoMultiplication Modules. Moreover, we prove that every p-Multiplication Module/fa?page=1&sort=1&ftyp=all&fgrp=all&fyrs=all" target="_blank">CoMultiplication Module which is not cyclic, has no maximal submodule and its annihilator is not prime. Also we give an example of a module over a Dedekind domain which is not weak comultiplication, but all of whose local-izations at prime ideals are comultiplication and hence serves as a counterexample to [11, Proposition 2. 3] and [12, Proposition 2. 4].

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    NIKSERESHT, A., & SHARIF, h.. (2014). ON COMULTIPLICATION AND R-MULTIPLICATION MODULES. JOURNAL OF ALGEBRAIC SYSTEMS, 2(1), 1-19. SID. https://sid.ir/paper/718140/en

    Vancouver: Copy

    NIKSERESHT A., SHARIF h.. ON COMULTIPLICATION AND R-MULTIPLICATION MODULES. JOURNAL OF ALGEBRAIC SYSTEMS[Internet]. 2014;2(1):1-19. Available from: https://sid.ir/paper/718140/en

    IEEE: Copy

    A. NIKSERESHT, and h. SHARIF, “ON COMULTIPLICATION AND R-MULTIPLICATION MODULES,” JOURNAL OF ALGEBRAIC SYSTEMS, vol. 2, no. 1, pp. 1–19, 2014, [Online]. Available: https://sid.ir/paper/718140/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button