Objective: This study investigated whether short stimulation (30 minutes) of human adipose stem cells (hASCs) with 1, 25-dihydroxyvitamin D3 (calcitriol or 1, 25-(OH)2VitD3), fitting within the surgical procedure time frame, suffices to induce osteogenic differentiation, and compared this with continuous treatment with 1, 25-(OH)2VitD3. Materials and Methods: In this experimental study, hASCs were pretreated with/without 10 nM calcitriol for 30 minutes, seeded on biphasic calcium phosphate (BCP), and cultured for 3 weeks with/without 1, 25-(OH)2VitD3. Cell attachment was determined 30 minutes after cell seeding. AlamarBlue assay, alkaline phosphatase (ALP) assay, ALP staining, real-time polymerase chain reaction (PCR), and protein assay were used to evaluate the effect of short calcitriol pretreatment on proliferation and osteogenic differentiation of hASCs up to 3 weeks. Results: Pretreatment with 1, 25-(OH)2VitD3 enhanced the attachment of hASCs to BCP by 1. 5-fold compared to nontreated cells and increased the proliferation by 3. 5-fold at day 14, and 2. 6-fold at day 21. In contrast, continuous treatment increased the proliferation by 1. 7-fold only at day 14. After 2 weeks, ALP activity was increased by 18. 5-fold when hASCs were pretreated with 1, 25-(OH)2VitD3 for 30 minutes but increased only 2. 6-fold when compared with its continuous counterpart. Moreover, after 14 days, pretreatment resulted in significant upregulation of the osteogenic markers RUNX2 and SPARC by 3. 6-fold and 2. 2-fold, respectively, while this was not observed upon continuous treatment. Finally, 30 minutes pretreatment of hASCs with 1, 25-(OH)2VitD3 increased VEGF189 expression, which may contribute to the process of angiogenesis. Conclusion: This study is the first research showing that 30 minutes pretreatment of hASCs with 1, 25-(OH)2VitD3, not only enhanced cell attachment to the scaffold at seeding time, but also promoted the proliferation and osteogenic differentiation of hASCs more strongly than continuous treatment, suggesting that short pre-treatment with 1, 25-(OH)2VitD3 is a promising approach for the regeneration of bones in a one-step surgical procedure.