Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

242
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

192
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid

Pages

  273-282

Abstract

 Objective: Bone morphogenetic protein 4 (BMP4) and Basic Fibroblast Growth Factor (bFGF) play important roles in embryonic heart development. Also, two epigenetic modifying molecules, 5ˊ-azacytidine (5ˊ-Aza) and valproic acid (VPA) induce cardiomyogenesis in the infarcted heart. In this study, we first evaluated the role of BMP4 and bFGF in cardiac trans-differentiation and then the effectiveness of 5´-Aza and VPA in reprogramming and cardiac differentiation of human Adipose Tissue-Derived Stem Cells (ADSCs). Materials and Methods: In this experimental study, human ADSCs were isolated by collagenase I digestion. For cardiac differentiation, third to fifth-passaged ADSCs were treated with BMP4 alone or a combination of BMP4 and bFGF with or without 5ˊ-Aza and VPA pre-treatment. After 21 days, the expression of cardiac-specific markers was evaluated by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, immunocytochemistry, flow cytometry and western blot analyses. Results: BMP4 and more prominently a combination of BMP4 and bFGF induced cardiac differentiation of human ADSCs. Epigenetic modification of the ADSCs by 5ˊ-Aza and VPA significantly upregulated the expression of OCT4A, SOX2, NANOG, Brachyury/T and GATA4 but downregulated GSC and NES mRNAs. Furthermore, pre-treatment with 5ˊ-Aza and VPA upregulated the expression of TBX5, ANF, CX43 and CXCR4 mRNAs in three-week differentiated ADSCs but downregulated the expression of some cardiac-specific genes and decreased the population of cardiac troponin I-expressing cells. Conclusion: Our findings demonstrated the inductive role of BMP4 and especially BMP4 and bFGF combination in cardiac trans-differentiation of human ADSCs. Treatment with 5ˊ-Aza and VPA reprogrammed ADSCs toward a more pluripotent state and increased tendency of the ADSCs for mesodermal differentiation. Although pre-treatment with 5ˊ-Aza and VPA counteracted the cardiogenic effects of BMP4 and bFGF, it may be in favor of migration, engraftment and survival of the ADSCs after transplantation.

Cites

  • No record.
  • References

    Cite

    APA: Copy

    JAVERI, ARASH, ASADI, ASADOLLAH, & FAKHR TAHA, MASOUMEH. (2020). Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid. CELL JOURNAL (YAKHTEH), 22(3), 273-282. SID. https://sid.ir/paper/738125/en

    Vancouver: Copy

    JAVERI ARASH, ASADI ASADOLLAH, FAKHR TAHA MASOUMEH. Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid. CELL JOURNAL (YAKHTEH)[Internet]. 2020;22(3):273-282. Available from: https://sid.ir/paper/738125/en

    IEEE: Copy

    ARASH JAVERI, ASADOLLAH ASADI, and MASOUMEH FAKHR TAHA, “Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid,” CELL JOURNAL (YAKHTEH), vol. 22, no. 3, pp. 273–282, 2020, [Online]. Available: https://sid.ir/paper/738125/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top