Background and Objectives: The release of toxic, hazardous and fire hazardous substances from storage tanks in process and chemical industries has always been one of the hazards of working people, residents around these industries, and the environment. This study was done with the aim of modeling and evaluating the consequences of benzene leakage in the coke production unit of Isfahan Steel Company. Materials and Methods: In order to observe ethical standards in research, research information was obtained with written permission from Isfahan Steel Company. In the present study, in order to modeling and investigating the release of benzene, at first cycle of the process in the coking plant, and then Existing hazards were identified by performing a risk assessment using the FMEA method. The consequence evaluation in a process unit consists of selecting a scenario, specifying the scenario's specifications, modeling the consequences of the scenarios and finally analyzing the results. For this purpose, the software ALOHA version 5. 4. 7 has been used for modeling the outcome and evaluation of benzene leakage. Results: The results of simulations show that the most serious risk factor for personnel is the concentration of benzene in the environment. And due to the control room being 72 meters from the corresponding reservoir, up to 169 meters of the tank the concentration of benzene vapors reaches 800 ppm. Hence, people who are at this distance will not be able to escape during an incident. Also, the contour lines of simulating the pool fire resulting from the benzene release, shows that in the leakage scenarios with a diameter of 5 mm, 25 mm and 100 mm, distances less than 10, 14 and 51 m influenced with fire, respectively. Conclusion: Despite the errors in the results of mathematical modeling and the explanation of possible scenarios, simulation of benzene leakage and its consequences, can be used in the formulation of preventive strategies and emergency planning in the coking plant of Isfahan Steel Company.