Making the optimal decision to prioritize the operation in watershed management projects is to reduce the risk of flooding due to the impact of various parameters, complex and, of course, important. The game theory has a high performance in making the optimal decision to solve multi-objective problems. In this study, this method was used to prioritize on the watershed of the flood risk in the Sezar watershed. By using two Borda algorithms and bargaining in game theory, the most effective parameters in all sub-watersheds and the most critical sub-watersheds were identified. By implementing the Borda scoring method, residential parameters with 93. 5, drainage density of 91 and average slope, and the shape of the sub area with a score of 90. 5, and hence the implementation of the bargaining algorithm, the most effective parameters in the competition between the 12 parameters in all sub-watersheds, Moderate slope parameters, length of the main waterways and rangelands were used. According to the principles governing this method, the selection of these parameters is based on the running of all players in all fields. In fact, the three parameters mentioned above are faster in all sub-watersheds, and the number 16 is the number Subways have arrived. Finally, the Sezar watershed Prioritization Plans are presented with both methods, which are in the first place under the Borda method, under the domains I, N, G, P and O, and in the bargaining chamber, G, H, N, I and F are in the first place.