Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Journal Issue Information

Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    496-497
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    3
Keywords: 
Abstract: 

To Editor, Non-small cell lung cancer (NSCLC) accounts for about 80-85% of total lung cancer cases with survival rate of <5 years, worldwide.1 The current therapeutic strategies for NSCLC include surgery, radiation therapy, chemotherapy and immunotherapy, limited due to their off-target side effects and patient incompliance.2 Among many cellular metabolic pathways, Mevalonate pathway is crucial metabolic process, due to its involvement in cellular energetics. HMG-Co-A reductase is a key enzyme which converts 3-hydroxy-3methylglutryl -CoA (HMG-Co-A) to mevalonate and further to farnesyl pyro-phosphate (FPP) geranylgeranyl pyro-phosphate (GGPP). HMG-CO-A expression has been associated with various cancers, such as breast, ovarian and colorectal cancer. Several studies have shown that high HMG-CO-A expression is associated with increased tumor progression and metastasis in clinical scenario. Moreover, inhibition of HMG-CO-A activity reduces the production of cholesterol and other isoprenoids which could affect their metabolic’s and starve the tumors. Statins have been reported to exert anti-tumoral effects by modulating cell proliferation, apoptosis, angiogenesis and metastasis. Therefore, HMGCO-A expression may serve as a potential therapeutic target in cancer. Inhibition of Mevalonate pathway by HMG-Co-A reductase inhibitors could help in blocking the cell cycle check points, resulting in blocking of NSCLC proliferation

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 2
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    498-498
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    3
Keywords: 
Abstract: 

Dear Editor, ChatGPT (Generative Pre-trained Transformer), a breakthrough innovation by OpenAI) is being touted as a revolutionary tool with immense potential in an array of medical and pharmaceutical research and scientific peer review (SPR) processes.1,2 Studies revealed that ChatGPT might act as a complementary tool to the human SPR and aid in expediting the process, reduce reviewer fatigue, and shorten publication timelines.3,4 Of note, ChatGPT displayed remarkable competence in providing shrewd feedback, detecting methodological defects, and measuring the article’s impact on the advancement of the respective field, all with a fair inter-rater agreement.5 On the other side, a recent article by Liang et al raised an alarm regarding the perils of using ChatGPT in the peer review process. The study found remarkable alteration using ChatGPT in nearly 17% of the peer-review reports.6 The researchers have analyzed about 146 000 peer reviews submitted to the AI conferences (pre- and post-launch of ChatGPT) and found a remarkable upsurge in the use of certain buzzword adjectives like versatile, meticulous, intricate, etc. (the telltale signs of ChatGPT-written text) in the review reports.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 3
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    499-503
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Purpose: Artificial intelligence (AI), particularly large language models like ChatGPT developed by OpenAI, has demonstrated potential in various domains, including medicine. While ChatGPT has shown the capability to pass rigorous exams like the United States Medical Licensing Examination (USMLE) Step 1, its proficiency in addressing breast cancer-related inquiries—a complex and prevalent disease—remains underexplored. This study aims to assess the accuracy and comprehensiveness of ChatGPT’s responses to common breast cancer questions, addressing a critical gap in the literature and evaluating its potential in enhancing patient education and support in breast cancer management. Methods: A curated list of 100 frequently asked breast cancer questions was compiled from Cancer.net, the National Breast Cancer Foundation, and clinical practice. These questions were input into ChatGPT, and the responses were evaluated for accuracy by two primary experts using a four-point scale. Discrepancies in scoring were resolved through additional expert review. Results: Of the 100 responses, 5 were entirely inaccurate, 22 partially accurate, 42 accurate but lacking comprehensiveness, and 31 highly accurate. The majority of the responses were found to be at least partially accurate, demonstrating ChatGPT’s potential in providing reliable information on breast cancer. Conclusion: ChatGPT shows promise as a supplementary tool for patient education on breast cancer. While generally accurate, the presence of inaccuracies underscores the need for professional oversight. The study advocates for integrating AI tools like ChatGPT in healthcare settings to support patient-provider interactions and health education, emphasizing the importance of regular updates to reflect the latest research and clinical guidelines.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 19
Author(s): 

Negi Sheetal | Sharma Sarika

Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    504-512
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

The increasing trend of consuming ready-to-eat (RTE) food has become a global phenomenon, and this has raised concerns about the potential negative impacts on human health. Recent studies have shown a correlation between the consumption of RTE foods and the expansion of multidrug resistance (MDR) in humans. MDR is a significant challenge in the effective theory of infectious diseases, as it limits the effectiveness of antibiotics and other drugs used in therapy. Consumption of RTE food contribute to the development of MDR in humans. Additionally, there are potential risks of consuming RTE food contaminated with antibiotic-resistant bacteria, which can cause severe health consequences. The article highlights the need for awareness campaigns on the potential hazard related to the ingestion of RTE food and the importance of responsible and safe food production practices. It also recommends the need for regulatory bodies to establish strict guidelines for the production and distribution of RTE food to ensure that they are free from harmful contaminants and that their consumption does not lead to the development of MDR in humans. Overall, this article provides a comprehensive analysis of the potential negative impacts of RTE food consumption on human health and emphasizes the need for a more cautious approach to food consumption to protect public health.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 6
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    513-523
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    3
Abstract: 

Liver cancer, specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related deaths, following pancreatic cancer. The 5-year overall survival rate for HCC remains relatively low. Currently, there are multiple treatment options available for HCC, including systemic drugs, minimally invasive local therapies such as radiofrequency ablation, transarterial chemoembolization (TACE), and arterial radioembolization (TARE), as well as surgical interventions like liver resection or transplantation. However, the effectiveness of drug delivery to the cancerous liver is hindered by pathophysiological changes in the organ. In order to address this challenge, lipid-based nanoparticles (LNPs) have emerged as promising platforms for delivering a diverse range of therapeutic drugs. LNPs offer various structural configurations that enhance their physical stability and enable them to accommodate different types of cargo with varying mechanical properties and degrees of hydrophobicity. In this article, we provide a comprehensive review of the current applications of LNPs in the development of anti-HCC therapies. By examining the existing research, we aim to shed light on the potential future directions and advancements in this field.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 8
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    524-536
Measures: 
  • Citations: 

    0
  • Views: 

    2
  • Downloads: 

    1
Abstract: 

Photodynamic therapy (PDT) is a multidisciplinary area, which involves photophysics and photochemical sciences and plays an important role in cancer diagnosis and treatment. PDT involves a photo-activable drug called photosensitizer (PS), a specific wavelength of light and cellular compounds to produce toxic oxygen species in a much-localized way to destroy malignant tumors. Despite the various benefits of PDT, some PS-related limitations hinder its use as an ideal treatment option for cancer. To address these limitations (e.g., poor bioavailability, weak permeability, hydrophobicity, and aggregation), lipid-based and vesicular drug delivery systems have been employed. These carrier systems possess the ability to enhance the bioavailability, permeability, and solubility of the drug. Furthermore, they tend to load hydrophobic and lipophilic compounds and can be employed for an efficient and targeted drug delivery. The purpose of this review is to highlight the precise idea of PDT, the limitations of PDT related to PS, and the application of lipidic and tocosomal carriers in PDT for the treatment of various types of cancers. Liposomes, nanoliposomes, solid lipid nanoparticles, vesicular phospholipid gels, exosomes, transferosomes, and tocosomes are presented as commonly–employed vesicular drug carriers. Moreover, the amalgamation of cell-based drug delivery systems (CBDDS) with PDT holds considerable potential as an encouraging avenue in cancer treatment, especially in the context of immunotherapy.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 24
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    537-542
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    2
Abstract: 

Effective optimal pharmacotherapy requires a comprehensive understanding of the drug’s pharmacokinetic properties. Chronic kidney disease (CKD) influences medication pharmacokinetics. However, whether sex differences exist in the pharmacokinetics of drugs for children with CKD is unknown. The primary aim of this article was to evaluate the effect of sex on pharmacokinetics of drugs commonly used for CKD treatment in children. Secondary outcome was to address the impact of sex in CKD disease progression. Electronic databases, PubMed, EMBASE, Google Scholar, and Web of Science were searched from inception, using Mesh terms in English for sex differences in the pharmacokinetics of drugs in children with CKD. No studies have documented sex-related differences in the pharmacokinetics of drugs for the treatment of CKD in children. As a consequence, it is difficult to predict the effect of sex on pharmacokinetics by extrapolating data from adult studies to children. Evidence to date suggests that girls generally have a higher prevalence and disease progression of CKD when compared to boys regardless of age. Understanding the pharmacokinetics and pharmacodynamics of drugs provides practical consideration for dosing optimal medication regimens. Future kinetic studies are needed evaluating the effect of sex on the pharmacokinetics and pharmacodynamics of drugs in children with CKD.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 11
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    543-557
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    2
Abstract: 

Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 14
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    558-573
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 3
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    574-590
Measures: 
  • Citations: 

    0
  • Views: 

    2
  • Downloads: 

    2
Abstract: 

Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton’s jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 47
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    591-603
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Purpose: Statin therapy is widely used for the management of dyslipidemia and the prevention of cardiovascular diseases (CVDs). However, there is a growing concern about its potential effects on bone metabolism markers and mineral density. The aim of this systematic review and meta-analysis was to investigate the effect of statin therapy on these parameters. Methods: PubMed/MEDLINE, Scopus, and Clarivate Analytics Web of Science databases were searched from inception to August 2023, using MESH terms and keywords. Results: After screening 2450 articles, 16 studies that met the inclusion criteria were included, of which 12 randomized controlled trials (RCTs) were used for meta-analysis. The findings showed that statin therapy significantly reduced bone-specific alkaline phosphatase (B-ALP) levels (WMD=-1.1 U/L; 95% CI -2.2 to -0.07; P=0.03; I2=0%,), and bone mineral density (BMD) at different sites (WMD=-0.06 g/cm2 ; 95% CI -0.08 to -0.04; P<0.001; I2=97.7%, P<0.001). However, this treatment did not have a significant effect on osteocalcin, serum C-terminal peptide of type I collagen (S-CTx), serum N-telopeptides of type I collagen (NTx) concentration, or overall fracture risk. Conclusion: This systematic review and meta-analysis provide evidence that statin therapy is associated with a significant reduction in B-ALP levels and BMD at different sites of the skeleton. Further studies are needed to investigate the long-term effects of statin therapy on bone health and to identify the potential underlying mechanisms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 7
Author(s): 

Akl Maher Monir | Ahmed Amr

Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    604-612
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    3
Abstract: 

Breast cancer remains a formidable public health challenge worldwide, characterized by its initiation within the breast’s diverse tissues, particularly the ducts and lobules. This malignancy is predominantly categorized into three subtypes based on receptor status and genetic markers: hormone receptor-positive, HER2-positive, and triple-negative. Each subtype exhibits distinct biological behaviors and responses to treatment, which significantly influence the prognosis and management strategies. The development and metastatic spread of breast cancer are complex processes mediated by interactions between tumor cells and the host microenvironment, involving various cellular and molecular mechanisms. This review highlights the potential therapeutic role of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in addressing the multifaceted aspects of breast cancer progression. Specifically, celecoxib modulates angiogenesis by reducing the levels of vascular endothelial growth factor (VEGF) through decreased PGE2 production, enhances the immune response by alleviating PGE2-mediated immunosuppression, and inhibits metastasis by limiting the activity of matrix metalloproteinases (MMPs). These mechanisms collectively hinder tumor growth, immune evasion, and metastatic spread. By synthesizing recent findings and analyzing the impact of celecoxib on these pathways, this paper seeks to delineate the integrated approaches necessary for managing metastatic breast cancer effectively.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 6
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    613-622
Measures: 
  • Citations: 

    0
  • Views: 

    2
  • Downloads: 

    1
Abstract: 

Purpose: This study evaluated whether a nanostructured lipid carrier (NLC) delivery system could safely and accurately deliver nucleic acids to the cell nucleus using the enhanced green fluorescent protein (EGFP)-C1 plasmid model. Methods: The NLC was formulated using the emulsification method and equipped for cationic lipid-mediated transfection with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), which interacts electrostatically with nucleic acid. The NLC attributes, including size, polydispersity index, and zeta potential, were assessed by dynamic light scattering (DLS). The morphological structure was analyzed using transmission electron microscopy. Entrapment efficiency was evaluated by a direct method. Cellular uptake mechanisms of pEGFP-C1-NLC and the ability of pEGFP-C1 to penetrate the nucleus of TM4 cells to express EGFP were observed using confocal microscopy. Results: pEGFP-C1-NLC exhibited particle sizes in the range 56-88 nm with a particle charge range of -6.0 to+1.3 mV. The polydispersity index<0.5 showed good size uniformity, and entrapment efficiency of pEGFP-C1in the NLC was 92.06±2.295%. The NLC formulation was internalized predominantly via caveolae-mediated endocytosis, as indicated by EGFP expression following successful delivery of pEGFP by the NLC into the cells. Conclusion: NLC formulation could deliver genetic material to the nucleus and could be considered a gene therapy candidate for spermatogenesis.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 5
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    623-633
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Purpose: In the current investigation, an ultrasonic approach was performed to produce menadione sodium bisulfite-loaded solid lipid nanoparticles (MSB-SLNs) with rhamnolipid as bio-surfactant, which aimed to increase the dermal delivery and anti-pigmentation effect. Method: To achieve optimum delivery for MSB, the impact of the ratio of two surfactants (rhamnolipid: Tween) on nanoparticle attributes and the respective functions were evaluated. In vitro diffusion process, in vitro cytotoxicity assay, determination of melanin content of melanoma cells, L-DOPA auto-oxidation inhibitory test, and skin irritation studies carried out to investigate the suitability of MSB formulation in dermal application. Results: The optimized nanoparticles showed an average particle size, zeta potential, polydispersity index (PDI), and drug entrapment efficiency of 117.26±1.12 nm, -6.28±0.33 mV, 0.262±0.002, 83.34±0.75% respectively in hydrophilic-lipophilic balance (HLB) of 12. The in vitro diffusion process demonstrated that MSB-SLN gel had a prolonged release pattern. The levels of MSB in the cutaneous layers (52.192±2.730% or 961.59±50.313 μg/cm2 ) and the receiver compartment (23.721±1.803 % or 437.049± 33.236 μg/cm2 ) for the MSB-SLN gel was higher than MSB simple and showed no cutaneous irritancy and toxicity in rats. MSB-SLN inhibited melanin formation and was remarkably higher than free MSB. MSB-SLN inhibited L-3,4- dihydroxyphenylalanine (L-DOPA) auto-oxidation to a greater extent (95.14±1.46%) than MSB solution (72.28±0.83%). Conclusion: This study’s observations revealed that the produced MSB-SLN might be used as a potential nano-vehicle for MSB dermal administration, thereby opening up innovative options for the management of hyper-melanogenesis problems.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 1
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    634-645
Measures: 
  • Citations: 

    0
  • Views: 

    2
  • Downloads: 

    1
Abstract: 

Purpose: We report on the design of hypoxia-induced dual-stage acting dendrimeric nanoparticles (NPs) for selective delivery of two chemotherapeutic model drugs doxorubicin (DOX) and tirapazamin (TPZ) for deepened drug delivery into hypoxic tumors in vitro. Methods: PAMAM G5 dendrimers were crosslinked with a hypoxic azo linker, attached to a mPEG to form a detachable corona on the dendrimer surface (PAP NPs). NPs were characterized by Zeta sizer, transmission electron microscope (TEM), Fourier transforms infrared (FTIR) and drug release kinetics. The anti-cancer performance of PAPs was evaluated by numerous tests in 2D and 3D cultured MDA-MB-231 breast cancer cells. Results: MTT assay showed a significant difference between PAP and PAMAMG5 in terms of biocompatibility, and the effect of PAP@DOX was significantly greater than free DOX in hypoxic conditions. The results of DAPI and Annexin V-FITC/PI cell staining also confirmed uniform drug penetration as validated by induction of 90% cell apoptosis in spheroids and a high level of PAP@DOX-induced ROS generation under hypoxia conditions. Mechanistically, PAP@DOX significantly reduced the expression of mTOR, and Notch1, while the expression of Bax and Caspase3 was considerably unregulated, compared to the controls. Importantly, hypoxia-responsive disintegration and hypoxia-induced activation of HAP drug were synergized to promote deep and homogenous HAP distribution in whole microtumor regions to efficiently eliminate residual tumor cells. Conclusion: Our results indicate the safety and high therapeutic potential of PAP system for targeted drug delivery of chemotherapeutics in particular HAPs which show maximum anti-cancer activity against hypoxic solid tumors.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 2

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 16
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    646-664
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Purpose: The eye drops are the prominent preparation used to treat surface eye disease (bacterial conjunctivitis). However, they have some limitations i.e., short corneal residence, resulting in low ocular bioavailability and necessitating frequent dose administration. The present study developed gentamicin (GE) bilosomes (BM)- laden in situ gel to improve therapeutic activity. The in situ gel system is initially in sol form before administration and converted into gel form in physiological eye conditions. Methods: The GE-BM was developed using the thin film hydration technique and optimized by D-optimal design. GE-BM was characterized for vesicle size, entrapment efficiency, zeta potential, morphology, and Fourier transform electron microscope (FTIR) . The optimized GE-BM (GE-BMopt) was incorporated into an in situ gel and assessed for physicochemical characteristics. GE-BMopt in situ gel was evaluated for in vitro release, ex vivo permeation, toxicity, and antimicrobial study. Results: GE-BMopt has a vesicle size of 185.1±4.8nm, PDI of 0.254, zeta potential of 27.6 mV, entrapment efficiency of 81.86±1.29 %, and spherical morphology. The FTIR study presented no chemical interactions between GE and excipients. GE-BMopt in situ gel (GE-BMoptIG4) showed excellent viscosity, gelling strength, and ex-vivo bio-adhesion. GE-BMopt-IG4 showed significant high and sustained release of GE (78.08±4.73% in 12h). GE-BMopt-IG4 displayed 3.27-fold higher ex-vivo goat corneal permeation than a pure GE solution. GE-BMopt-IG4 showed good corneal tolerance without any damage or irritation. GE-BMopt-IG4 showed significantly (P<0.05) higher anti-bacterial activity (ZOI) against Staphylococcus aureus and Escherichia coli than pure GE solution. Conclusion: The study determined that the BM in situ gel system can serve as a substitute carrier for GE to enhance its therapeutic effectiveness, and further preclinical studies are required.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 18
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    665-674
Measures: 
  • Citations: 

    0
  • Views: 

    4
  • Downloads: 

    1
Abstract: 

Purpose: The HLF and HuH-6 cell lines represent hepatocellular carcinoma (HCC) with different characteristics in chromosome content that may give different drug responses. Here, PGV-1 was intended to challenge the growth-suppressing effect on HLF and HuH-6 and trace the molecular target mechanism of action compared to sorafenib. Methods: We applied MTT cytotoxic assay, colony forming assay, flow cytometry analysis, immunofluorescence assay and western blot assay. Results: PGV-1 exhibited cytotoxic effects on HLF and HuH-6 with IC-50 values of 1 µM and 2 µM, respectively, whereas sorafenib showed less cytotoxicity with IC-50 values of 5 µM and 8 µM respectively. PGV-1 suppressed the cell growth permanently but not for sorafenib. Sorafenib did not change the cell cycle profiles on both cells, but PGV-1 arrested the cells at G2/M with the characteristic of senescent cells and mitotic disarrangement. PGV-1 and sorafenib showed the same effect in downregulating p-EGFR, indicating that both compounds have the same target on EGFR activation or as Tyrosine kinase inhibitors. PGV-1 suppressed the MYCN expression in HuH-6 and HLF cells but stabilized cMYC-T58 indicating that even though the MYCN was downregulated, the cells maintained the active form of cMYC. In this regard, PGV-1 also stabilized the expression of PLK-1 and AurA. Conclusion: PGV-1 elicits stronger cytotoxic properties compared to sorafenib. The lower the MYCN expression, the higher the cytotoxic effect of PGV-1. PGV-1 abrogates cell cycle progression of both cells in mitosis through EGFR inhibition and stabilizes PLK-1 and AurA in correlation with the suppression of MYCN expression.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 4

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 2
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    675-685
Measures: 
  • Citations: 

    0
  • Views: 

    3
  • Downloads: 

    2
Abstract: 

Purpose: L-asparaginase has been widely recognized as a critical component in the treatment of various types of lymphoproliferative disorders, since its introduction in 1960s. However, its use in some cases leads to allergic reactions rendering the continuation of treatment unfeasible. Thus, the development of L-asparaginase from alternative sources or the production of engineered enzymes have always been considered. This study aimed to produce and evaluate a novel enzyme designed based on the sequence of L-asparaginase from Escherichia coli bacteria with Y176F/S241C mutations. Methods: The Y176F/S241C mutant L-asparaginase was successfully expressed as the GST-fusion protein in E. coli, and then was subjected to affinity and size exclusion chromatography. The activity of the purified enzyme was determined based on the released ammonia as the result of substrate hydrolysis using Nessler’s reagent. Chemical denaturation experiment in the presence of increasing concentration of guanidinium chloride was applied to determine the folding stability of the purified enzyme. Results: The mutant enzyme was purified with an efficiency of 77-fold but at a low recovery of 0.7%. The determined kinetic parameters Km, Vmax, kcat, specific activity and catalytic efficiency were 13.96 (mM), 2.218 (mM/min), 273.9 (min-1), 237.8 (IU/mg) and 19.62 (mM-1 min-1), respectively. Moreover, unfolding free energy determined by guanidinium chloride induced denaturation for mutated and commercial L-asparaginase enzymes were 8421 J/mol and 5274 J/mol, respectively. Conclusion: The mutant enzyme showed improved stability over the wild-type. Although the expression level and recovery were low, the mutant L-asparaginase demonstrated promising activity and stability, with potential clinical and industrial applications.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 3

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 3
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    686-695
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Purpose: Lethal ventricular arrhythmias are a significant clinical concern following reperfusion therapies in elderly patients with myocardial infarction. The combination of multi-target therapies to achieve optimal anti-arrhythmogenesis and improve the chances of successful translation for patient benefit has prompted considerable interest. This study examined the anti-arrhythmic effect of nicotinamide mononucleotide (NMN)/ubiquinol combination treatment following myocardial ischemia/reperfusion (IR) injury in aged rats, with an emphasis on the role of oxidative stress and nitric oxide (NO). Methods: Male Wistar rats (n=30, 22-24 months old, 400-450 g) were randomized into five groups with or without IR and/or NMN and ubiquinol, either alone or in combination. NMN (100 mg/kg/48 hours) was administered intraperitoneally for 28 days before IR, and ubiquinol (30 mg/kg) was injected intravenously at early reperfusion. Electrocardiographic signals were recorded during the ischemia and the first 30 minutes of reperfusion. Two hours after reperfusion, myocardial hemodynamic and LDH release were measured, and the left ventricle samples were obtained to evaluate oxidative stress markers and NO levels. Results: NMN/ubiquinol combination treatment significantly minimized the occurrence and severity of IR-induced arrhythmias, improved myocardial function, and reduced LDH release (P<0.05). It also decreased MDA content, increased superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and enhanced NO formation (P<0.05). This combined treatment showed greater efficacy than the single treatments. Conclusion: This study revealed the anti-arrhythmic effect of NMN/ubiquinol combination treatment in IR-treated aged rats, which may be associated with reduced oxidative stress and increased NO formation. This combinational approach deserves more investigation due to its potential to confer better anti-arrhythmic effect during aging.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 11
Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    696-704
Measures: 
  • Citations: 

    0
  • Views: 

    1
  • Downloads: 

    1
Abstract: 

Purpose: This research investigated the development of short hairpin RNA (shRNA) molecules designed to target specific regions of the human respiratory syncytial virus (HRSV) M and F genes. The study aimed to assess the therapeutic potential of these shRNAs and evaluate the effectiveness of Tat peptide-mediated delivery in enhancing their functionality. Methods: We acquired isolates from pediatric patients experiencing respiratory illness then cultured in HEp-2 cells. We constructed plasmids expressing shRNAs. Tat peptide as a facilitator for shRNA plasmid delivery was used. The cytotoxicity of ribavirin, shRNA constructs, and control agents was assessed using the MTT assay. The transfection efficiency of Tat peptide-mediated shRNA delivery with that of lipofectamine 3000™ were compared. Finally, real-time PCR was employed to quantify HRSV replication in the treated cells. Results: Tat peptide-mediated delivery of shRNA plasmids significantly suppressed the expression of the M and F genes of HRSV compared to lipofectamine 3000™. This suppression was evident in both short-term experiments and scenarios involving stable shRNA expression. Furthermore, the combination of ribavirin with shRNA treatment resulted in a substantial reduction in viral load. Notably, the most pronounced antiviral effect was observed when both shRNAs were employed simultaneously. Conclusion: Our findings suggest that Tat peptide-mediated delivery of shRNA plasmids holds significant potential for achieving stable suppression of HRSV genes. This approach warrants further investigation as a potential gene therapy strategy for HRSV. By demonstrating promising results in vitro, this study highlights the need for future in vivo studies to comprehensively evaluate the therapeutic potential of this approach in a clinical setting.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 3
Author(s): 

Akl Maher Monir | Ahmed Amr

Issue Info: 
  • Year: 

    2024
  • Volume: 

    14
  • Issue: 

    3
  • Pages: 

    705-713
Measures: 
  • Citations: 

    0
  • Views: 

    5
  • Downloads: 

    5
Abstract: 

The Warburg effect, first observed by Otto Warburg in the 1920s, delineates a metabolic phenomenon in which cancer cells exhibit heightened glucose uptake and lactate production, even under normoxic conditions. This metabolic shift towards glycolysis, despite the presence of oxygen, fuels the energy demands of rapidly proliferating cancer cells. Dysregulated glucose metabolism, characterized by the overexpression of glucose transporters and the redirection of metabolic pathways towards glycolysis, lies at the crux of this metabolic reprogramming. Consequently, the accumulation of lactate as a byproduct contributes to the creation of an acidic tumor microenvironment, fostering tumor progression and metastasis. However, recent research, notably proposed by Maher Akl, introduces a novel perspective regarding the role of glycolipids in cancer metabolism. Akl’s glucolipotoxicity hypothesis posits that aberrant glycolipid metabolism, specifically the intracellular buildup of glycolipids, significantly influences tumor initiation and progression. This hypothesis underscores the disruptive impact of accumulated glycolipids on cellular homeostasis, thereby activating oncogenic pathways and promoting carcinogenesis. This perspective aims to synthesize the intricate mechanisms underlying both the Warburg effect and glucolipotoxicity, elucidating their collective contributions to tumor growth and malignancy. By comprehensively understanding these metabolic aberrations, novel avenues for therapeutic intervention targeting the fundamental drivers of cancer initiation and progression emerge, holding promise for more efficacious treatment strategies in the future.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 5 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 8
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button